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Abstract
The field of algorithmic randomness studies what it
means for infinite binary sequences to be random for
some given uncertainty model. Classically, such ran-
domness involves precise uncertainty models, and it
is only recently that imprecision has been introduced
into this field. As a consequence, the investigation into
how imprecision alters our view on random sequences
has only just begun. In this contribution, we establish
a close and surprising connection between precise and
imprecise uncertainty models in this randomness con-
text. In particular, we show that there are stationary
imprecise models and non-stationary precise models
that have the exact same set of computably random
sequences. We also discuss the possible implications
of this result for a statistics based on imprecise proba-
bilities.
Keywords: computable randomness, imprecise prob-
abilities, computability, coherent upper expectations,
supermartingales, non-stationarity

1. Introduction

What does it mean for an infinite binary sequence
011001100... to be random? This is a highly non-trivial
question that has led to numerous investigations. First of
all, it is important to realise that randomness is typically
defined with respect to some uncertainty model. So, our
opening question only makes sense once such a model
has been specified. These uncertainty models can be sta-
tionary or non-stationary, as well as precise or imprecise
[4, 5, 6, 11]. It is between the non-stationary precise and
the stationary imprecise uncertainty models that we will
reveal a remarkably close connection: we will show that
there are stationary imprecise models and non-stationary
precise models that have the exact same set of computably
random sequences.

Historically, the earliest notion of randomness—called
Church randomness—only considered precise probability
models that assign a probability p ∈ [0,1] to the outcome 1.
According to this notion, an infinite binary sequence is
Church random for p if the relative frequency of ones
along every computably selectable infinite subsequence

converges to p [1, 3], where ‘computably selectable’ essen-
tially means that there is some finite algorithm that decides
which elements to keep and to discard.

However, there are infinite sequences that satisfy this
requirement, but for which the running frequency of ones
along the sequence converges to p from below. Obviously,
such sequences disobey the law of the iterated logarithm.
For this reason, Jean Ville criticised this randomness defi-
nition, and argued that besides the law of large numbers, a
random sequence also ought to satisfy other statistical laws
[1]. Such discussions led to the development of many other
notions of randomness.

The most well-known and well-studied notions among
those are Martin-Löf randomness, computable randomness
and Schnorr randomness. The reason for that is twofold:
they have an intuitive interpretation and they can be defined
in several equivalent ways [7]. From a measure-theoretic
point of view, for example, an infinite binary sequence is
random for p ∈ [0,1] if it passes all computably imple-
mentable statistical tests that are associated with p. On the
other hand, if we adopt the martingale-theoretic approach,
then a sequence is random for p if there is no computable
betting strategy for getting arbitrarily rich along this se-
quence without borrowing, where the bets that are allowed
are determined by p, and where computability again means
that there is a finite algorithm that yields the strategy.

There is more to randomness, though, than the simple
case of a single probability p. As we mentioned above,
more general uncertainty models, such as non-stationary
precise ones, can also be used to define notions of ran-
domness [11]. And it is only recently that imprecise-
probabilistic uncertainty models have been introduced in
this context. That is, De Cooman and De Bock put forward
a martingale-theoretic approach that allows us to associate
computable randomness with imprecise rather than precise
probability models [4, 5, 6]. Their work still leaves room
for many open questions on how allowing for imprecision
changes our understanding of random sequences. In this
paper, we contribute to this understanding by proving a
remarkable relation between randomness for precise and
imprecise probability models. In particular, for every non-
singular rational interval I ⊆ [0,1], we will show that there
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is a non-stationary precise but non-computable uncertainty
model for which the set of computably random paths is the
same.

Our contribution is structured as follows. We start by
introducing interval forecasts and coherent upper expecta-
tions in Section 2, and explain how they can be interpreted
in terms of gambles that a subject is willing to offer. Sec-
tion 3 explains how to bet on a single variable in a way that
agrees with these uncertainty models, and lifts this idea to a
betting game/protocol on an infinite sequence of variables
by defining betting strategies that again agree with these
uncertainty models, and avoid borrowing. After clarifying
in Section 4 when such betting strategies are computable,
we present in Section 5 the imprecise-probabilistic notion
of computable randomness that we introduced in earlier
work [4, 8] and discuss some of its properties. Finally, in
Section 6, we prove our central result; an infinite sequence
is computably random for a rational interval forecast if and
only if it is computably random for some specific related
non-computable non-stationary precise uncertainty model.
In Section 7, we elaborate on the possible implications of
this result for a statistics based on imprecise probabilities.

2. Interval Forecasts

We start by considering a single variable X that takes values
x in the binary outcome space X := {1,0}. To describe
a subject’s uncertainty about the unknown value of X , we
use a closed interval I ⊆ [0,1]. We collect all such closed
intervals in the set I and call them interval forecasts. One
way to interpret an interval forecast I ∈I is to regard its
elements p ∈ I as possible values for the probability that
X equals 1. In this paper, however, where betting will play
a central role, we prefer to adopt a different interpretation.
We interpret the lower and upper bound of I as a subject’s
largest acceptable buying and smallest acceptable selling
price, respectively,1 for the uncertain pay-off X ∈ {0,1},
expressed in some linear utility scale.

Consequently, if I = [p, p], our subject is willing to ac-
cept the uncertain pay-off X− p for any buying price p≤ p,
and is willing to accept the uncertain pay-off q−X for any
selling price q≥ p. Due to the linearity of our utility scale,
this implies that he is willing to accept the uncertain pay-off
α(X − p)+β (q−X) for any p ≤ p, q ≥ p and α,β ≥ 0.
From the perspective of an opponent that bets against our
subject, this means that our subject is willing to offer her
any uncertain reward of the form α(p−X) + β (X − q),
with p ≤ p, q ≥ p and α,β ≥ 0. To manipulate these un-
certain rewards mathematically, it will be convenient to

1. Traditionally, in imprecise probabilities, the lower and upper bound of
I are interpreted as a subject’s supremum acceptable buying and infi-
mum acceptable selling price for the uncertain pay-off X . However, as
was proved in [8], our imprecise-probabilistic notion of computable
randomness is the same under both interpretations. Hence, we choose
the interpretation that leads to the simpler proofs.

identify them with maps on X , whose value in x is ob-
tained by replacing X with x. The reward X , for example,
then corresponds to the identity map on X . We will call
any such map f : X → R from the binary sample space
to the real numbers a gamble, and we denote the set of all
gambles by L (X ). Since |X |= 2, gambles can be drawn
in a two-dimensional space. This allows us to visualise the
cone of gambles that is offered to an opponent; we illustrate
this in Figure 1.

f (1)

f (0)

−2 −1 1

−2

−1

1

0

α(p−X)

β (X− p)

Figure 1: Let p := 1/4 and p := 3/4. Then the green region
depicts all gambles f ∈L (X ) that correspond
to an uncertain reward α(p− X) + β (X − q),
with p ≤ p, q ≥ p and α,β ≥ 0.

In what follows, it will be useful to have an analytical
condition that, for a subject with interval forecast I ∈I ,
characterizes the gambles he is willing to offer to an op-
ponent. To this end, we introduce upper (and lower) ex-
pectation operators. When I = p ∈ R, i.e., when I reduces
to a single number, we consider the linear expectation Ep
defined by

Ep( f ) := p f (1)+(1− p) f (0) for all f ∈L (X ). (1)

This is a most informative—or least conservative—model
for a subject’s uncertainty. When I = [p, p] /∈ R, we con-
sider the upper expectation EI defined by

EI( f ) :=max
p∈I
{p f (1)+(1− p) f (0)}

=max{p f (1)+(1− p) f (0),

p f (1)+(1− p) f (0)}
=max{Ep( f ),Ep( f )} for all f ∈L (X ). (2)
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As a closely related operator, we consider the conjugate
lower expectation EI : L (X )→ R defined by

EI( f ) :=−EI(− f ) = min{Ep( f ),Ep( f )} (3)

for all f ∈L (X ). It is a matter of straightforward verifi-
cation that the upper expectation EI satisfies the following
so-called coherence properties [2].

Proposition 1 Consider any interval forecast I ∈I . Then
for all gambles f ,g ∈L (X ), and all µ ∈ R and λ ≥ 0:

C1. min f ≤ EI( f )≤max f [boundedness]

C2. EI(λ f ) = λEI( f ) [non-negative homogeneity]

C3. EI( f +g)≤ EI( f )+EI(g) [subadditivity]

C4. EI( f +µ) = EI( f )+µ [constant additivity]

The coherence properties C2-C4 allow us to show that
a coherent upper expectation EI indeed characterizes the
gambles that are offered by our subject.

Proposition 2 Consider any gamble f ∈L (X ) and any
interval forecast I = [p, p] ∈ I . Then EI( f ) ≤ 0 if and
only if there are p ≤ p, q ≥ p and α,β ≥ 0 such that
f = α(p−X)+β (X−q).

Proof of Proposition 2 To prove the direct implication,
assume that EI( f )≤ 0. Observe that f can always be writ-
ten as f = γ(X− c), for suitably chosen γ,c ∈ R. If γ = 0,
then f = 0, so the statement then holds trivially. Conse-
quently, it suffices to prove that if γ > 0, then c≥ p, and if
γ < 0, then c≤ p. To do so, observe that by Equations (2)
and (3) it holds that EI(X) = p and EI(X) = p. Now, if
γ > 0, it follows from C2 and C4 that

0≥ EI( f ) = EI(γ(X− c)) = γ(EI(X)− c) = γ(p− c),

and hence, c ≥ p. If γ < 0, it follows from C2, C4 and
conjugacy that

0≥ EI( f ) = EI(γ(X− c)) = EI(−γ(c−X))

=−γEI(c−X) =−γ(c+EI(−X))

=−γ(c−EI(X)) =−γ(c− p),

and hence, c≤ p.
To prove the converse implication, assume that f =

α(p− X) + β (X − q), with p ≤ p, q ≥ p and α,β ≥ 0.
From C2-C4 and conjugacy it then immediately follows
that

EI( f ) = EI(α(p−X)+β (X−q))

≤ EI(α(p−X))+EI(β (X−q))

= αEI(p−X)+βEI(X−q)

= α(p+EI(−X))+β (EI(X)−q)

= α(p−EI(X))+β (EI(X)−q)

= α(p− p)+β (p−q)≤ 0,

which completes the proof.

3. Forecasting Systems and Betting
Strategies

We can test the correspondence between a subject’s interval
forecasts and the unknown outcomes of binary variables by
taking him up on a betting game.

We first introduce a betting game on a single binary vari-
able X . There are three players involved: Forecaster, Sceptic
and Reality. Forecaster initiates the game by providing an
interval forecast I⊆ [0,1], which describes, as we explained
in the previous section, his uncertainty about the uncertain
outcome X ∈ X . Next, Sceptic, being Forecaster’s op-
ponent, is allowed to pick any gamble f ∈ L (X ) that
Forecaster is willing to offer, meaning that EI( f )≤ 0. This
leads to an uncertain (possibly negative) gain f (X) for
Sceptic and − f (X) for Forecaster. Finally, Reality reveals
the outcome x ∈X , which leads to an actual (possibly
negative) gain f (x) for Sceptic and − f (x) for Forecaster.

To extend these ideas to an infinite betting game on
subsequent binary variables X1, . . . ,Xn, . . ., we require a bit
more terminology.

An infinite outcome sequence (x1, . . . ,xn, . . .) is called
a path and is also denoted by ω . All such paths are
collected in the set Ω := X N,2 and for every path
ω = (x1, . . . ,xn, . . .) ∈Ω, we let ω1:n := (x1, . . . ,xn) and
ωn+1 := xn+1 for all n ∈ N0. A finite outcome sequence
x1:n := (x1, . . . ,xn)∈X n is called a situation and is also de-
noted by s, with length |s| := n. All situations are collected
in the set S :=

⋃
n∈N0

X n. For any s = (x1, . . . ,xn) ∈ S
and x ∈ X , we write sx as a shorthand notation for
(x1, . . . ,xn,x). By convention, we call the empty sequence
� := x1:0 = () the initial situation. Note that for every path
ω ∈Ω, we have that ω1:0 =�.

Forecaster’s part in the game consists in providing an
interval forecast Ix1:n ∈ I for every finite outcome se-
quence x1:n ∈ S, with n ∈ N0, in order to describe his un-
certainty about the binary variable Xn+1 given that he has
observed x1:n.

Definition 3 (Forecasting system) A forecasting system
is a map ϕ : S→ I that associates with every situation
s∈ S an interval forecast ϕ(s)∈I . A forecasting system ϕ

is called precise if ϕ(s) ∈ R for all s ∈ S. We denote the
set I S of all forecasting systems by Φ.

Once Forecaster has specified a forecasting system ϕ ∈
Φ, Sceptic is allowed to adopt any betting strategy that,
for every situation s ∈ S, engages in a gamble fs ∈L (X )
that Forecaster is bound to offer by his specification of
the interval forecast ϕ(s) ∈I , i.e., a gamble fs for which
Eϕ(s)( fs) ≤ 0. Afterwards, Reality reveals the successive
outcomes Xn = xn at each successive time instant n ∈ N,
leading up to the sequence ω = (x1, . . . ,xn, . . .). At every

2. N denotes the set of natural numbers, whereas N0 :=N∪{0} denotes
the set of non-negative integers.
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time instant n, after Reality has revealed the finite out-
come sequence x1:n, Sceptic uses the gamble fx1:n that cor-
responds to her betting strategy. Next, Reality reveals the
next outcome Xn+1 = xn+1 ∈X and the reward fx1:n(xn+1)
goes to Sceptic. Moreover, we will prohibit Sceptic from
borrowing.

To formalise these betting strategies for Sceptic, we de-
fine a process as a map on situations. In particular, a real
process F : S→R is a map from situations to real numbers,
and similarly for a rational process F : S→ Q. A real—
or rational—process F is called non-negative if F(s)≥ 0
for all s ∈ S; it is called positive if F(s) > 0 for all s ∈ S.
A zero-one valued process S—with S(s) ∈ {0,1} for all
s ∈ S—is called a selection process.

A gamble process is a map from situations to gam-
bles. In particular, we associate with every real process
F a process difference ∆F : S→L (X ), which is a gam-
ble process that maps any s ∈ S to the gamble ∆F(s) :=
F(s•)−F(s), where we use F(s•) to denote the gamble
on X whose value, for any x ∈ X , is given by F(sx).
Note that F(x1:n) = F(�) + ∑

n−1
k=0 ∆F(x1:k)(xk+1) for all

x1:n ∈ S, with n ∈ N0. Given a forecasting system ϕ ∈ Φ,
we call a real process M a supermartingale for ϕ if
Eϕ(s)(∆M(s))≤ 0 for all s ∈ S. All supermartingales for ϕ

are collected in the set M(ϕ).
Supermartingales correspond to Sceptic’s allowed bet-

ting strategies. Indeed, assume that Forecaster adopts the
forecasting system ϕ ∈Φ, consider a time instant n ∈ N0,
and consider the situation where Reality has revealed a
finite outcome sequence ω1:n ∈ S. A supermartingale M
for ϕ then specifies a gamble ∆M(ω1:n) ∈ L (X ) that
Sceptic is allowed to pick. If she does, and Reality reveals
the outcome ωn+1 ∈X , the (possibly negative) amount
∆M(ω1:n)(ωn+1) goes to Sceptic and her total capital be-
comes

M(ω1:n+1) = M(ω1:n)+∆M(ω1:n)(ωn+1)

= M(�)+
n−1

∑
k=0

∆M(ω1:k)(ωk+1),

with M(�) her initial capital. By focussing on non-negative
supermartingales, we additionally prevent Sceptic from
borrowing.

As an important special case, we consider test super-
martingales T : S→ R for ϕ . These are non-negative su-
permartingales for ϕ for which T (�) := 1. We collect all
test supermartingales for ϕ in the set T(ϕ). In one of our
proofs, we will need a particular way of defining such test
supermartingales. To that end, we consider a multiplier pro-
cess D, which is a non-negative gamble process. With every
such multiplier process, we associate a non-negative real
process D} defined by D}(�) := 1 and, for all s ∈ S and
x∈X , by the recursion equation D}(sx) :=D}(s)D(s)(x).
Given a forecasting system ϕ ∈Φ, if a multiplier process
D satisfies Eϕ(s)(D(s))≤ 1 for all s ∈ S, then we call D a

supermartingale multiplier for ϕ . Every supermartingale
multiplier D for ϕ can be used to construct a test super-
martingale for ϕ .

Proposition 4 Consider a multiplier process D and a fore-
casting system ϕ . If D is a supermartingale multiplier for ϕ ,
then D} is a test supermartingale for ϕ .

Proof of Proposition 4 Since Eϕ(s)(D(s)) ≤ 1 and
D}(s)≥ 0 for all s ∈ S, it follows from C2 and C4 that

Eϕ(s)(∆D}(s)) = Eϕ(s)
(
D}(s•)−D}(s)

)
= Eϕ(s)

(
D}(s)(D(s)−1)

)
= D}(s)

(
Eϕ(s)(D(s))−1

)
≤ 0,

for all s ∈ S.

Vice versa, with every positive real process T , we asso-
ciate a multiplier process DT , which maps any s ∈ S to a
gamble DT (s) defined by

DT (s)(x) :=
T (sx)
T (s)

for all x ∈X .

Positive supermartingales T ∈M(ϕ) have positive su-
permartingale multipliers DT for ϕ .

Proposition 5 Consider a forecasting system ϕ and a
positive supermartingale T . Then, DT is a positive super-
martingale multiplier for ϕ .

Proof of Proposition 5 Clearly, since T is positive, DT is
well-defined and positive. Moreover, since Eϕ(s)(∆T (s))≤
0 and T (s)> 0 for all s ∈ S, it follows from C2 and C4 that

Eϕ(s)(DT (s)) = Eϕ(s)

(
T (s•)
T (s)

)
= Eϕ(s)

(
T (s)+∆T (s)

T (s)

)
= Eϕ(s)

(
1+

∆T (s)
T (s)

)
= 1+

Eϕ(s)(∆T (s))
T (s)

≤ 1 for all s ∈ S,

which completes the proof.

4. Computable Betting Strategies
Sceptic will not be allowed to adopt just any supermartin-
gale as a betting strategy. We will also require that it should
be computable [1, 3]. Loosely speaking, this means that
her betting strategies should be ‘describable’, in the sense
that for each of them there is some finite description that
specifies how to approximate it to arbitrary precision. To
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formalize when a supermartingale is computable, we turn
to computability theory.

As a basic building block, this theory considers recursive
natural functions φ : N0→ N0, which are maps that can be
computed by a Turing machine [9]. By the Church–Turing
thesis, this is equivalent to the existence of a finite algorithm
that, given the input n ∈ N0, outputs φ(n) ∈ N0. We note
that the domain N0 can be replaced by N, S, S×X , S×N0
or any other countably infinite set that can be encoded by
a finite alphabet. For example, since a path ω ∈ Ω is a
function from N to X = {0,1}, we call it recursive if there
is some finite algorithm that, given the input n ∈N, outputs
ωn ∈X . Similarly, a selection process S is recursive if
there is a finite algorithm that, given the input s∈ S, outputs
the binary digit S(s) ∈ {0,1}.

More generally, for any countable domain D that can
be encoded by a finite alphabet, a rational map q : D →
Q is recursive if there are three recursive natural maps
a,b,c : D → N0 such that

b(d) 6= 0 and q(d) = (−1)c(d) a(d)
b(d)

for all d ∈D .

Since a finite number of finite algorithms can always be
combined into one finite algorithm [10], this is equivalent
to the existence of a finite algorithm that can compute q(s)
for all s ∈ S. In particular, a rational test supermartingale
T for ϕ is recursive if it is recursive as a rational map
on S. Moreover, a rational supermartingale multiplier D is
recursive if it is recursive as a rational map on S×X that
maps any (s,x) ∈ S×X to D(s)(x).

In what follows, we will need the following relation-
ships between the recursive character of positive rational
test supermartingales and positive rational supermartingale
multipliers. To prove these (and future) results, we pro-
ceed as in [9], and establish a map’s recursive character by
providing an algorithm for it.

Proposition 6 Consider any positive rational test super-
martingale T ∈ T(ϕ) and its associated rational super-
martingale multiplier DT . If T is recursive, then so is DT .

Proof of Proposition 6 If T is recursive, then there
is a finite algorithm that can compute T (s) for all s ∈ S.
Since the same algorithm can clearly be used to compute
DT (s)(x) = T (sx)/T (s) for all (s,x) ∈ S×X , it follows
that DT is a recursive rational supermartingale multiplier
for ϕ .

Proposition 7 Consider any rational supermartingale
multiplier D for ϕ and its associated rational test super-
martingale D} ∈ T(ϕ). If D is recursive, then so is D}.

Proof of Proposition 7 By definition, D}(�) = 1 and

D}(x1:n) =
n−1

∏
k=0

D(x1:k)(xk+1),

for all x1:n ∈ S \ {�}. Furthermore, since D is recursive,
there is a finite algorithm that can compute D(s)(x) for
all (s,x) ∈ S×X . Since, for every x1:n ∈ S, D}(x1:n) is a
finite product of such terms, and since taking the product
is a recursive operation, it follows that the same algorithm
can be used to compute D}(s) for all s ∈ S. Hence, D} is
recursive as well.

Computability theory not only considers recursive ob-
jects, but also uses them to introduce computable ones. The
simplest case is that of a computable real number: a real
number x ∈ R is called computable if there is some recur-
sive rational map q : N0→Q such that |x−q(n)|< 2−n for
all n∈N0. More generally, for any countable domain D that
can be encoded by a finite alphabet, a real map r : D → R
is called computable if there is a recursive rational map
q : D ×N0 → Q such that |r(d)− q(d,n)| < 2−n for all
d ∈D and n∈N0. Intuitively, a real map is thus computable
if there is some finite algorithm that, for every element of
the domain, can generate its binary expansion up to any arbi-
trary precision. In particular, a real process F is computable
if there is some recursive rational map q : S×N0→Q such
that |F(s)− q(s,n)| < 2−n for all s ∈ S and n ∈ N0. Two
types of computable processes that we will make frequent
use of are computable supermartingales and computable
precise forecasting systems.

5. Computable Randomness
Now that we know what a computable supermartin-
gale is, we can finally introduce the martingale-theoretic
(imprecise-probabilistic) notion of computable randomness
that appears in the title of this contribution. Loosely speak-
ing, a path ω ∈Ω is computably random for a forecasting
system ϕ ∈ Φ if there is no computable betting strategy
that is allowed by ϕ and that makes Sceptic arbitrarily rich
along ω , without borrowing. This formalizes in the follow-
ing definition, which we borrow from De Cooman and De
Bock [4, Definition 3].

Definition 8 (Computable randomness) A path ω ∈ Ω

is computably random for a forecasting system ϕ ∈ Φ

if there is no computable non-negative real supermartin-
gale M ∈M(ϕ) for which limsupn→∞ M(ω1:n) = +∞.

Interestingly, a path ω ∈ Ω is computably random for a
forecasting system ϕ ∈Φ if and only if there is no recursive
positive rational betting strategy that starts with unit capital,
is allowed by ϕ and makes Sceptic arbitrarily rich along ω .
Since this last notion simplifies our proofs, it is the one that
we will use more often.

Proposition 9 ([8, Proposition 4]) A path ω ∈ Ω is com-
putably random for a forecasting system ϕ ∈Φ if and only
if there is no recursive positive rational test supermartin-
gale T ∈ T(ϕ) for which limn→∞ T (ω1:n) = +∞.
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We refer the reader to ([4, 8]) for more information about
this imprecise–probabilistic notion of computable random-
ness, and only mention those results that are relevant to
what we want to do here. First of all, we establish that Defi-
nition 8 is meaningful, in the sense that every forecasting
system ϕ ∈Φ has at least one computably random path.

Proposition 10 ([4, Section 6]) For every forecasting sys-
tem ϕ ∈ Φ, there is at least one path ω ∈ Ω that is com-
putably random for ϕ .

Moreover, any ω ∈ Ω that is computably random for
ϕ ∈ Φ is also computably random for any forecasting
system that is less informative—or more conservative—
than ϕ .

Proposition 11 ([4, Proposition 5]) Let a path ω ∈ Ω

be computably random for a forecasting system ϕ ∈ Φ.
Then ω is also computably random for any forecasting sys-
tem ϕ∗ ∈Φ such that ϕ v ϕ∗, meaning that ϕ(s)⊆ ϕ∗(s)
for all s ∈ S.

When a forecasting system ϕ ∈ Φ uses the very same in-
terval forecast I ∈I in all situations, i.e., ϕ(s) = I for all
s ∈ S, then we call this ϕ a stationary forecasting system,
and we simplify the notation by writing I instead of ϕ .
In what follows, we will call a path ω ∈ Ω computably
random for an interval forecast I ∈I if it is computably
random for the corresponding stationary forecasting sys-
tem. Interestingly, for any path ω ∈Ω that is computably
random for such an interval forecast I ∈ I , computable
randomness imposes bounds on the relative frequency of
ones along all recursively selectable infinite subsequences
of ω . That is, ω satisfies an ‘imprecise’ version of Church
randomness.

Proposition 12 ([4, Corollary 11]) Consider any path
ω ∈ Ω, any recursive selection process S ∈S for which
limn→+∞ ∑

n−1
k=0 S(ω1:k) = +∞, and any interval forecast

I ∈I . If ω is computably random for I, then

min I ≤ liminf
n→+∞

∑
n−1
k=0 S(ω1:k)ωk+1

∑
n−1
k=0 S(ω1:k)

≤ limsup
n→+∞

∑
n−1
k=0 S(ω1:k)ωk+1

∑
n−1
k=0 S(ω1:k)

≤max I.

6. Non-stationary Precise Forecasting
Systems versus Interval Forecasts

At this point, we have introduced all the necessary math-
ematical apparatus for moving towards the main result of
this paper; we intend to show that for any rational interval
forecast I ∈I , there is at least one non-computable non-
stationary precise forecasting system ϕ ∈ Φ that has the
exact same set of computably random paths. To this end,

we consider a special class of precise forecasting systems.
Fix any two real numbers p,q ∈ [0,1] and any path ϖ ∈Ω.
We use these to introduce the forecasting system ϕϖ

p,q ∈Φ,
defined by

ϕ
ϖ
p,q(s) :=

{
p if ϖ|s|+1 = 0
q if ϖ|s|+1 = 1

for all s ∈ S.

We start by observing that if the path ϖ is not recursive,
and p < q, then the corresponding forecasting system is not
computable.

Lemma 13 Consider any two real numbers p,q ∈ [0,1]
such that p < q and any path ϖ ∈Ω. If ϕϖ

p,q is computable,
then ϖ is recursive.

Proof of Lemma 13 Assume that ϕϖ
p,q is computable.

Consequently, there is some recursive rational map q̃ : S×
N0→Q such that |ϕϖ

p,q(s)− q̃(s,n)|< 2−n for all s∈ S and
n∈N0. Let’s consider the number ε := (q−p)/3. Since ε > 0,
we can fix some N ∈ N such that 2−N < ε . Moreover, let
r be a rational number such that p+ ε < r < q− ε; this
is always possible because q− p = 3ε . If we consider the
recursive rational process F defined by F(s) := q̃(s,N) for
all s ∈ S, then clearly

|ϕϖ
p,q(s)−F(s)|< 2−N < ε for all s ∈ S.

Consequently, for all s ∈ S, if F(s) ≤ r, then ϕϖ
p,q(s) <

r+ ε < q, and therefore ϕϖ
p,q(s) = p, and if r < F(s), then

p < r− ε < ϕϖ
p,q(s), and therefore ϕϖ

p,q(s) = q. Hence, if
we consider the trivial path ω0 ∈Ω defined by ω0

n := 0 for
all n ∈ N, then the path ϖ can be inferred from F because

ϖn+1 =

{
0 if F(ω0

1:n)≤ r
1 if F(ω0

1:n)> r
for all n ∈ N0.

Since r is a rational number, ω0 is a recursive path and F
is a recursive rational process, the above inequalities can
be checked recursively. Hence, ϖ is recursive.

A sufficient condition for a path ϖ to be non-recursive,
is for it to be computably random for an interval forecast I
that excludes 0 and 1.

Lemma 14 Consider any path ϖ ∈ Ω and any interval
forecast I ∈I for which 0 /∈ I and 1 /∈ I. If ϖ is recursive,
then ϖ is not computably random for I.

Proof of Lemma 14 Assume that ϖ is recursive.
Consequently, the selection processes S0,S1 ∈ S , de-
fined by S0(s) := 1−ϖ|s|+1 and S1(s) := ϖ|s|+1 for all
s ∈ S, are recursive. Clearly, since ϖ is a binary infi-
nite sequence, it holds that limn→∞ ∑

n−1
k=0S0(ϖ1:k) = ∞ or

limn→∞ ∑
n−1
k=0S1(ϖ1:k) = ∞, and therefore

lim
n→∞

∑
n−1
k=0 S0(ϖ1:k)ϖk+1

∑
n−1
k=0 S0(ϖ1:k)

= 0
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or

lim
n→∞

∑
n−1
k=0 S1(ϖ1:k)ϖk+1

∑
n−1
k=0 S1(ϖ1:k)

= 1.

Now, assume ex absurdo that ϖ is computably ran-
dom for I. Consequently, we infer from Proposition 12
that all recursive selection processes S ∈ S for which
limn→+∞ ∑

n−1
k=0 S(ϖ1:k) = +∞ satisfy

0 < min I ≤ liminf
n→+∞

∑
n−1
k=0 S(ϖ1:k)ϖk+1

∑
n−1
k=0 S(ϖ1:k)

and

limsup
n→+∞

∑
n−1
k=0 S(ϖ1:k)ϖk+1

∑
n−1
k=0 S(ϖ1:k)

≤max I < 1,

a contradiction.

By combining both results, we arrive at a procedure for
obtaining non-computable non-stationary forecasting sys-
tems of the form ϕϖ

p,q. Note that, due to Proposition 10, the
computably random path ϖ that appears in this construction
exists.

Proposition 15 For any two rational numbers p,q∈ [0,1]
such that p < q, any interval forecast I ∈I for which 0 /∈ I
and 1 /∈ I, and any path ϖ ∈Ω that is computably random
for I, the forecasting system ϕϖ

p,q is non-computable and
non-stationary.

Proof of Proposition 15 Assume ex absurdo that ϕϖ
p,q

is computable or stationary. If it is stationary, then since
p 6= q, it must be that ϖn = 0 for all n ∈ N or ϖn = 1 for
all n ∈N. In both cases, ϖ is clearly recursive. The same is
true if ϕϖ

p,q is computable, due to Lemma 13. It therefore
follows from Lemma 14 that ϖ is not computably random
for I, a contradiction.

To gain some intuition about the forecasting systems
ϕϖ

p,q ∈Φ in this result, consider a path ϖ1/2 ∈Ω that is com-
putably random for I = 1/2. The corresponding forecasting
system ϕϖ1/2p,q can then be thought of as generated by re-
peatedly flipping a fair coin: if it lands heads, the subject
forecasts p; otherwise, he forecasts q.

In the following theorem, which we consider to be our
main result, we use these kinds of forecasting systems to re-
veal a surprisingly close connection between non-stationary
precise forecasting systems and interval forecasts.

Theorem 16 Consider any two rational numbers p,q ∈
[0,1] such that p < q, any interval forecast I ∈I for which
0 /∈ I and 1 /∈ I, any path ϖ ∈Ω that is computably random
for I, and the corresponding precise forecasting system ϕϖ

p,q.
Then a path ω ∈Ω is computably random for ϕϖ

p,q if and
only if it is computably random for [p,q].

Proof of Theorem 16 We begin with the direct implica-
tion. Assume that ω ∈ Ω is computably random for ϕϖ

p,q.
Since ϕϖ

p,q(s)⊆ [p,q] for all s ∈ S, it follows from Proposi-
tion 11 that ω is computably random for [p,q].

To prove the converse implication, assume that ω ∈ Ω

is computably random for [p,q]. To prove that ω is com-
putably random for ϕϖ

p,q, we consider any recursive positive
rational test supermartingale T ∈ T(ϕϖ

p,q) and prove that it
remains bounded along ω . To this end, consider the rational
multiplier process DT . By Proposition 5, DT is a positive
rational supermartingale multiplier for ϕϖ

p,q. Moreover, we
know from Proposition 6 that DT is recursive because T is.

For any s ∈ S, it cannot happen that both Ep(DT (s))> 1
and Eq(DT (s)) > 1, since this would violate the inequality
Eϕϖ

p,q(s)(DT (s))≤ 1, which is a consequence of our assump-
tion that DT is a supermartingale multiplier for ϕϖ

p,q. Hence,
for every s ∈ S, precisely one of the following cases occurs:

(i) Ep(DT (s))≤ 1 and Eq(DT (s))> 1;

(ii) Ep(DT (s))> 1 and Eq(DT (s))≤ 1;

(iii) Ep(DT (s))≤ 1 and Eq(DT (s))≤ 1;

as is graphically represented in Figure 2.

f (1)

f (0)

0 1 2
0

1

2

Ep( f ) = 1

Eq( f ) = 1

Figure 2: Let p := 2/5 and q := 3/5. Then the red region de-
picts all positive gambles f ∈L (X ) for which
Ep( f ) ≤ 1 and Eq( f ) > 1, the blue region de-
picts all positive gambles f ∈L (X ) for which
Ep( f ) > 1 and Eq( f ) ≤ 1, and the green re-
gion depicts all positive gambles f ∈ L (X )
for which Ep( f )≤ 1 and Eq( f )≤ 1.

Consider now three selection processes Sp,Sq and S[p,q]
in S , defined for all s ∈ S by

Sp(s) :=

{
1 if Ep(DT (s))≤ 1 and Eq(DT (s))> 1
0 otherwise,
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Sq(s) :=

{
1 if Ep(DT (s))> 1 and Eq(DT (s))≤ 1
0 otherwise,

and

S[p,q](s) :=

{
1 if Ep(DT (s))≤ 1 and Eq(DT (s))≤ 1
0 otherwise.

Then clearly, for each s ∈ S, exactly one of these pro-
cesses will have value 1. Going back to Figure 2, Sp(s) = 1
indicates that DT (s) is located in the red region, Sq(s) = 1
indicates that DT (s) is located in the blue region, and
S[p,q](s) = 1 indicates that DT (s) is located in the green
region. Moreover, since DT is a recursive rational process
and p and q are rational, it follows from Equation (1) that
Ep(DT (s)) and Eq(DT (s)) are rational and recursively de-
terminable for all s∈ S. Consequently, the inequalities used
for defining Sp, Sq and S[p,q] can be checked in a recursive
way, and hence, these selection processes are recursive.

We now take a closer look at the recursive selection
process Sp and prove that there is only a finite number
of situations s ∈ S for which Sp(s) = 1. To this end, we
consider the selection process S̃p ∈S defined by

S̃p(s) :=

{
1 if Sp(t) = 1 for some t ∈ S with |t|= |s|
0 if Sp(t) = 0 for all t ∈ S with |t|= |s|,

for all s∈ S. Since Sp is recursive and since for every n∈N0
the situations t ∈ S for which |t|= n can be recursively enu-
merated, the selection process S̃p is recursive. Now assume
ex absurdo that there is an infinite number of situations
s ∈ S for which Sp(s) = 1. Then for all N ∈ N0, there is
some s ∈ S with |s| > N such that Sp(s) = 1, and hence,
limn→∞ ∑

n−1
k=0 S̃p(ϖ1:k) = ∞.

It now suffices to prove that

for all s ∈ S, if S̃p(s) = 1, then ϖ|s|+1 = 0. (4)

Indeed, in that case, since limn→∞ ∑
n−1
k=0 S̃p(ϖ1:k) = ∞, we

will get that

lim
n→∞

∑
n−1
k=0 S̃p(ϖ1:k)ϖk+1

∑
n−1
k=0 S̃p(ϖ1:k)

= 0,

and therefore, since ϖ was assumed to be random with
respect to I, Proposition 12 will imply that min I ≤ 0, con-
tradicting the assumption that 0 /∈ I. Hence, we will be able
to conclude that there is a finite number of situations s ∈ S
for which Sp(s) = 1.

To prove Statement (4), fix any s ∈ S such that S̃p(s) =
1. This implies that there is some t ∈ S with |t| =
|s| such that Sp(t) = 1. From the definition of Sp, it
follows that Ep(DT (t)) ≤ 1 and Eq(DT (t)) > 1. Since
Eϕϖ

p,q(t)(DT (t)) ≤ 1 (because DT is a supermartingale mul-
tiplier for ϕϖ

p,q), the second of these two inequalities im-
plies that ϕϖ

p,q(t) = p. Since |t|= |s|, it follows that indeed
ϖ|s|+1 = ϖ|t|+1 = 0.

In a similar way, it can be shown that there are only a
finite number of situations s ∈ S for which Sq(s) = 1.

Next, we consider the positive rational multiplier process
D[p,q] defined by

D[p,q](s) := S[p,q](s)DT (s)+(1−S[p,q](s)) for all s ∈ S.

Since both S[p,q] and DT are recursive, D[p,q] is recursive as
well. Observe that, for all s ∈ S,

D[p,q](s) =

{
DT (s) if Ep(DT (s))≤ 1 and Eq(DT (s))≤ 1
1 otherwise.

Since Ep(1) = 1 and Eq(1) = 1 by Equation (1), it fol-
lows from Equation (2) that E [p,q](D[p,q](s)) ≤ 1 for
all s ∈ S. Hence, D[p,q] is a recursive positive rational
supermartingale multiplier for [p,q]. Consequently, the
real process D}[p,q] is a recursive positive rational test su-
permartingale for [p,q] by Proposition 4 and 7. Since
ω is computably random for [p,q] by assumption, D}[p,q]
must therefore remain bounded along ω , in the sense that
limsupn→∞ D}[p,q](ω1:n)< ∞.

Now recall that, for all s ∈ S, exactly one of the pro-
cesses Sp(s), Sq(s) and S[p,q](s) will assign the value 1.
Since there is only a finite number of situations s ∈ S
for which Sp(s) = 1 or Sq(s) = 1, this implies that there
is only a finite number of situations s ∈ S for which
S[p,q](s) = 0, and therefore, only a finite number of sit-
uations s ∈ S for which DT (s) 6= D[p,q](s). For any such
situation s, we furthermore have that D}[p,q](s) = 1. Conse-
quently, since limsupn→∞ D}[p,q](ω1:n)< ∞, it follows that
limsupn→∞ T (ω1:n)<∞. Since this is true for any recursive
positive rational test supermartingale T ∈ T(ϕ), Proposi-
tion 9 implies that ω is computably random for ϕϖ

p,q.

What does this result tell us about adopting imprecision
in computable randomness?

To start the discussion, we recall from Proposition 11
that if a path ω ∈ Ω is computably random for some pre-
cise forecasting system ϕ ∈Φ, then it is also computably
random for any forecasting system that is less informa-
tive. Hence, in particular, for any ϖ ∈ Ω and rationals
p < q, if ω is computably random for ϕϖ

p,q, then it is also
computably random for the interval forecast [p,q]. So we
see that [p,q] can be used as a simpler—yet imprecise—
alternative for ϕϖ

p,q. In many cases, this will result in a
larger set of computably random paths, and hence, a less
informative description of the computable randomness as-
sociated with ω . However, interval forecasts do not just
serve as an alternative for non-stationary precise forecasts.
For example, as showed by De Cooman and De Bock [5,
Section 10], there are paths ω that are computably random
for [p,q], but not computably random for any precise (possi-
bly non-stationary) computable forecasting system ϕ . This
led them to claim that computable randomness is inherently
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imprecise, because the randomness of such paths ω can
only be captured by an imprecise forecasting system. Theo-
rem 16 shows that the assumption that ϕ is computable is
crucial for this claim, because, for any ϖ that satisfies the
conditions of Theorem 16, ω will always be computably
random for ϕϖ

p,q, which, as we know from Proposition 15,
is not computable. In the next section, we argue that this
assumption is justified on practical grounds.

7. Theoretical and Practical Necessity of
Interval Forecasts in Statistics

To better understand the implications of Theorem 16, we
find it useful to look at it from the point of view of statistics,
whose aim it is to learn an uncertainty model—or, equiv-
alently, a forecasting system ϕ—from an initial segment
ω1:n of an idealised (unobserved) path ω .

It seems justified to require that the path ω is computably
random for the forecasting system ϕ . So let us take a look
at the multitude of forecasting systems for which this is the
case. From the discussion in [8, Section 5], we know that
there is at least one (rational) interval forecast [p,q] that
makes ω computably random. Meanwhile, it is not guaran-
teed that there is a stationary precise forecast p that makes
ω computably random. Hence, imprecision is needed if
we insist on a stationary description. If we allow for non-
stationary uncertainty models however, then Theorem 16
shows that we could replace [p,q] by the non-stationary
precise forecasting system ϕϖ

p,q, with ϖ as in Theorem 16.
In fact, there is an even easier way to associate a non-
stationary precise forecasting system with a path ω .

Proposition 17 Any path ω ∈ Ω is computably random
for the precise forecasting system ϕω

0,1.

Proof of Proposition 17 Consider any recursive positive
rational test supermartingale T ∈ T(ϕω

0,1). Since T is a
supermartingale for ϕω

0,1, it holds for any n ∈ N0 that

0≥ Eϕω
0,1(ω1:n)(∆T (ω1:n))

=

{
∆T (ω1:n)(0) if ωn+1 = 0
∆T (ω1:n)(1) if ωn+1 = 1

= ∆T (ω1:n)(ωn+1),

and therefore,

T (ω1:n) = T (�)+
n−1

∑
k=0

∆T (ω1:k)(ωk+1)≤ T (�) = 1.

Consequently, all recursive positive rational test super-
martingales T ∈ T(ϕω

0,1) are bounded above by 1 along
ω . It therefore follows from Proposition 9 that ω is com-
putably random for ϕω

0,1.

Hence, if ω is computably random for [p,q], then it is
also computably random for at least two non-stationary

precise models. We won’t risk getting bogged down into a
discussion on what uncertainty models are best associated
with a path ω; that would require a paper on its own. We
do want to point out though that the uncertainty models
that correspond with ω typically do not contain the same
information; that is, they do not share the same set of com-
putably random paths. Interestingly, however, as we know
from Theorem 16, [p,q] and ϕϖ

p,q do have the same set of
computably random paths and are, in that sense, equally
expressive. On that ground, theoretically, one might argue
that imprecision is not needed.

We believe that this story changes when moving to more
practical grounds. Imagine that we are given an initial finite
segment ω1:n of a path ω ∈ Ω, and that we want to learn
a forecasting system ϕ for which ω is computably ran-
dom. We will have to do so by adopting a finite algorithm
that, given the data ω1:n, outputs a forecasting system ϕ ′

whose set of computably random paths is then believed
to contain ω . A candidate for ϕ ′ could be the forecasting
system ϕω

0,1 that is generated by ω itself. However, it seems
impossible to learn this forecasting system, as it basically
requires us to know ω itself. Another candidate for ϕ ′ could
be ϕϖ

p,q. Here too, however, it seems impossible to learn
this model because it is non-computable. Meanwhile, we
believe that our chances of learning the equally expressive
interval forecast [p,q] are much higher.

In summary, it is one thing to associate precise uncer-
tainty models with a path ω , but it is another thing to
actually learn them. When it comes to the latter, impre-
cise forecasts seem more promising than non-computable
non-stationary precise ones.

8. Conclusions and Future Work
We conclude that rational interval forecasts are actually
quite precise, in the sense that they have the same set of
computably random paths as the related non-computable
non-stationary precise forecasting systems ϕϖ

p,q, meanwhile
being simpler, stationary and computable. Moreover, our
analysis suggests that the computable character of ratio-
nal interval forecasts will be of utmost importance when
moving to the field of statistics. In particular, it seems pos-
sible nor opportune to try and learn—or even approximate—
non-computable non-stationary precise forecasting systems,
which—by definition—cannot be described by a finite al-
gorithm, from a finite initial path segment ω1:n.

In our future work, we plan to investigate if our results
apply to other notions of randomness as well, such as
Martin-Löf randomness, Schnorr randomness and Church
randomness. We also plan to further investigate our prelimi-
nary ideas about a randomness-based approach to statistics,
and try to develop new statistical methods based on them.
Last, we plan to continue exploring the marvellous dif-
ferences and similarities between classical and imprecise-
probabilistic notions of randomness.
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