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Abstract
We describe two functions on possibility distribu-

tions which allow one to compute binary operations
with dependence either specified by a copula or par-
tially defined by an imprecise copula. We use the fact
that possibility distributions are consonant belief func-
tions to aggregate two possibility distributions into
a bivariate belief function using a version of Sklar’s
theorem for minitive belief functions, i.e. necessity
measures. The results generalise previously published
independent and Fréchet methods, allowing for any
stochastic dependence to be specified in the form of a
(imprecise) copula. This new method produces tighter
extensions than previous methods when a precise cop-
ula is used. These latest additions to possibilistic arith-
metic give it the same capabilities as p-box arithmetic,
and provides a basis for a p-box/possibility hybrid
arithmetic. This combined arithmetic provides tighter
bounds on the exact upper and lower probabilities than
either method alone for the propagation of general
belief functions.
Keywords: Possibility Theory, P-box, Copulas, Prob-
abilistic Arithmetic, Probability Bounds Analysis, Im-
precise Probabilities

1. Introduction

Due to its simplicity in formulation and calculus, possibility
theory [9] is a popular model for bounding sets of probabil-
ity measures. Early in the formulation of the theory, many
authors [8] argued that Zadeh’s classical min aggregation
[26], and its implied levelwise interval arithmetic, was suf-
ficient for computing functions of sets of probabilities, and
that it corresponds to a non-interactivity between variables.
More recently however [2], it has been shown that such
a direct application of fuzzy set theory is not consistent
with probability theory in most circumstances, with modi-
fications being proposed [12]. These modifications are of

the form of combination operations for constructing multi-
variate possibility distributions from univariate marginals,
allowing one to make such constructions with stochastic
independence and unknown interaction (Fréchet). It has
been shown in [12] that when these combination methods
are used with the extension principle, probability measures
with the specified dependence are correctly propagated.

Probability box arithmetic, or probability bounds analy-
sis, is based on three convolutions which were originally in-
troduced by Schweizer and Sklar [21] as triangle functions,
or solutions to the triangle inequality in probabilistic metric
spaces. Williamson and Downs [24] describes how these
convolutions may be used in an arithmetic of random vari-
ables with a partially defined dependence structure, given
as a lower bound of a copula. They also describe a general
numerical method for computing robust outer solutions to
these convolutions, in the form of an upper and lower dis-
crete approximation of quantile functions. These structures
were originally named dependency bounds, but are now
labeled probability boxes, or p-boxes, and have been gener-
alised to include uncertainties other than dependency errors
[11]. The three convolutions from [24] are the following.
For a non-decreasing binary operator f : R+×R+→ R+,
two random variables X and Y with distribution functions
(df) FX and FY and copula CXY :

σCXY , f (FX ,FY )(z) =
∫

f{z}
dCXY (FX (x),FY (y)), (1)

τCXY , f (FX ,FY )(z) = sup
f (x,y)=z

[CXY (FX (x),FY (y))], (2)

ρCXY , f (FX ,FY )(z) = inf
f (x,y)=z

[Cd
XY (FX (x),FY (y))], (3)

where the set f{z} = {(x,y)|x,y ∈ R+, f (x,y) < z}, and
where Cd is the dual of a copula: Cd(u,v) = u+v−C(u,v).
The σ convolution is a Lebesgue-Stieltjes integral which
gives the df resulting from a binary operation f between
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two dfs with a known copula. The τ and ρ convolutions
compute the lower and the upper cdf of a p-box respectively
when only the copula’s lower bound is known. That is,
τCXY , f and ρCXY , f propagate all copulas more positive than
CXY . For example τW, f and ρW, f compute a p-box which
bounds all stochastic dependencies, where W is the lower
Fréchet bound. τuv, f and ρuv, f propagate all dependencies
more positive than independence, that is, all copulas which
are positive quadrant dependent [16], where the product
copula C(u,v) = uv gives stochastic independence.

Convolutions (1)-(3) are defined for non-decreasing bi-
nary operations, but may be extended to non-increasing op-
erations by first performing an appropriate unary operation
to one of the variables and then evaluating the convolutions
with a non-decreasing operator. For example subtraction
may be performed by negating one of the variables and eval-
uating (1)-(3) with sum: i.e. σCX ,−Y ,+(FX ,F−Y ). The copula
CX ,−Y may be found from a simple transformation of CX ,Y .
Note that if X and Y are positive quadrant dependent, then
X and −Y will be negative quadrant dependent [16], and
therefore τuv,− and ρuv,− give p-boxes which bound nega-
tive quadrant dependence [10]. P-box arithmetic has been
extended to p-boxes defined on R and many of the base
binary and unary operations that are required in a program-
ming language [11].

In this contribution we present analogous functions to
(1)-(3) for possibility distributions, giving a dependent pos-
sibilistic arithmetic which allows for any stochastic depen-
dence to be precisely defined as a copula, or imprecisely
as a copula’s lower bound. This generalisation has perfect
dependence (Zadeh), independence, and Fréchet as special
cases. The results of this paper suggest that the propagation
methods of [12] correspond to a τ and ρ convolution in
p-box arithmetic (an imprecise propagation of dependen-
cies), as opposed to σ convolution (a precise dependence).
We further show how precise copulas may be propagated,
giving tighter results than when only the lower bounds are
used. In the context of propagating (imprecise) dependen-
cies, the results of this paper bring possibilistic arithmetic
in line with the capabilities of p-box arithmetic, and is the
motivation of this work.

In the following section we discuss possibility theory in
the context of imprecise probabilities.

2. Possibility Theory
A possibility distribution is any measurable function πX :
R→ [0,1] which satisfies the normality condition

sup
x∈R

πX (x) = 1. (4)

In this paper we consider only continuous πX . The mea-
surability is required for the super and sub level sets of πX
to be measurable, and for the probability of these sets to
be well defined; which will be discussed in the following.

Bounds on a probability measure PX on the measurable
space (R,B) where B is the Borel σ -algebra can be ob-
tained from πX by

NecX (U)≤ PX (U)≤ΠX (U) ∀U ∈B, (5)

where ΠX is the possibility measure given by

ΠX (U) = sup
x∈U

πX (x), (6)

and where the necessity measure NecX is

NecX (U) = 1− sup
x/∈U

(πX (x)) = 1−ΠX (UC). (7)

A probability measure PX and a possibility distribution πX
are said to be consistent [5] if inequality (5) holds, that
is if the probability measure is a bounded above by the
possibility measure, and below by the necessity measure.
This defines a bounded set of probability measures, a credal
set C(πX ), which are consistent with πX :

C(πX ) = {PX : PX (U)≤ΠX (U)∀U ∈B}. (8)

Alternatively, consistency may be defined in terms of the
level sets of πX . In particular, a probability and a possibility
measure are consistent iff the probabilities of the superlevel
sets, the so-called α-cuts, Cα

πX
= {x ∈ R : πX (x)> α}

for α ∈ [0,1] are bounded from below by 1−α [4]:

PX
(
Cα

πX

)
≥ 1−α ∀α ∈ [0,1]. (9)

The propagation of possibility distributions is usually de-
fined in terms of the extension principle. However it has
been argued by several authors [1, 2, 12] that the prop-
agated possibility distributions are only consistent with
probability theory in limited circumstances. Therefore a
variant of the extension principle has been defined in order
to preserve consistency [12]: given N random input vari-
ables X1, . . . ,XN with possibility distributions πX1 , . . . ,πXN

and a function f : RN →R, then the possibility distribution
of the output variable Y = f (X1, . . . ,XN) is given by

πY (y) = sup
(x1,...,xN)∈RN :
y= f (x1,...,xN)

J(πX1 (x1) , . . . ,πXN (xN)) (10)

for all y ∈ R. Therein, the operator J accounts for the joint
dependency structure of the marginal input variables. Hose
and Hanss [12] describe three possible choices:

Zadeh: Jmin(α1, . . . ,αN) = min(α1, . . . ,αN),

Strong Independence:
JSI(α1, . . . ,αN) = 1− (1−min(α1, . . . ,αN))

N ,

Unknown Interaction:
JUI(α1, . . . ,αN) = min(1,N ·α1, . . . ,N ·αN),
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with Jmin corresponding to the original extension princi-
ple, and maximally correlated inputs, JSI corresponding
to inputs which are stochastically independent, and JUI

corresponding to inputs which make no assumption about
stochastic dependence (Fréchet).

The possibility measure induced by a possibility distri-
bution may be viewed as a special case of a plausibility
function [22], likewise the necessity is a special case of
a belief function, and where the α-cuts correspond to the
nested focal sets. In particular the belief of an α-cut is
simply 1−α [4]:

NecX (Cα
πX
) = BelX (Cα

πX
) = 1−α. (11)

Conversely, not every belief function BelX is conso-
nant and can, therefore, not usually be precisely described
by a possibility measure [7]. That is, if P(BelX ) = {PX :
BelX (U)≤ PX (U)∀U ∈B} describes the credal set of a
belief function BelX (similar to the credal set of a possi-
bility distribution), then it is not generally possible to find
a possibility distribution πX such that P(BelX ) = C(πX ).
However, in such situations, it is possible to find a con-
sonant outer approximation achieving P(BelX ) ⊆ C(πX )
via the imprecise probability-to-possibility transform intro-
duced by Hose and Hanss [13].

Given an arbitrarily chosen candidate1 possibility distri-
bution qX of X , Hose and Hanss show that the possibility
distribution πX given by

πX (x) = sup
PX∈P(BelX )

PX ({ξ ∈ R : qX (ξ )≤ qX (x)})

= 1−BelX ({ξ ∈ R : qX (ξ )> qX (x)})
= 1−BelX (C

qX (x)
qX ),

(12)

for x ∈ R is consistent with all PX ∈ PX , i.e. it provides
an outer approximation of PX . Most importantly, it is also
plausibility-conform to qX , i.e. from qX (x1) ≤ qX (x2) it
follows that πX (x1) ≤ πX (x2) for all x1,x2 ∈ R (but not
vice versa), and it is maximally specific2. That is, even
though πX does not generally exactly describe PX , one may
not find a ‘better’ plausibility-conform possibility distribu-
tion that is also an outer approximation. Of course, much
of the quality of the resulting πX depends on the candidate
possibility distribution qX , the obvious degree of freedom
in this approach, but Hose and Hanss provide several rea-
sonable options for how to choose it. For instance, for the
outer approximation of belief functions, they suggest the
‘melting transform’ given by the pointwise plausibilities

qX (x) = PlX ({x}) = 1−BelX (R\{x}), (13)

for x ∈ R. Below, a different (more constructive) way of
finding qX is pursued.

1. Hose and Hanss call this a (subjective) plausibility function.
2. The concept of specificity is not discussed here. Refer, e.g., to [6] for

further details.

3. Joint Possibilities Using Copulas
In this paper, we study dependent binary operations and
therefore restrict ourselves to bivariate copulas (2-copulas),
however the generalisation to n-copulas is straightforward.
A 2-copula is a function C : [0,1]2→ [0,1] with the follow-
ing properties [16]:

1. Grounded: C(0,v) =C(u,0) = 0,

2. Uniform margins: C(u,1) = u; C(1,v) = v,

3. 2-increasing:
C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0
for all 0≤ u1 ≤ u2 ≤ 1 and 0≤ v1 ≤ v2 ≤ 1.

Three important 2-copulas are3

W (u,v) = max(u+ v−1,0),
Ψ(u,v) = uv,

M(u,v) = min(u,v),

with W and M being bounds on all 2-copulas: W ≤C ≤M.
Copulas are mainly used in dependence modelling [14, 16],
and can be used to construct multivariate dfs given their
univariate marginals. This is enabled by a theorem from
Sklar [23]:

Theorem 1 (Sklar’s theorem) Let X and Y be random
variables with joint df H and univariate marginals FX and
FY . Then there exists a copula C such that for all (x,y) ∈
R2 :

H(x,y) =C(FX (x),FY (y)). (14)

If FX and FY are continuous, then C is unique; otherwise C
is uniquely determined on support FX × support FY .

Moreover, X and Y are stochastically independent iff CXY =
Ψ, perfectly positively dependent (perfect) iff CXY =M and
perfectly negatively dependent (opposite) iff CXY =W .

Sklar’s theorem may be applied in reverse, that is a cop-
ula may be constructed from any multivariate df with con-
tinuous marginals [16]:

Theorem 2 Let H be a bivariate df with continuous
marginals F and G, with quasi-inverses F−1 and G−1. Then
there exits a copula C such that for all (u,v) ∈ [0,1]2 :

C(u,v) = H(F−1(u),G−1(v)). (15)

The Gaussian copula is a well known copula family which
is defined using (15):

CΦ
r (u,v) = Φr(Φ−1(u),Φ−1(v)), (16)

where Φr is a zero mean bivariate Gaussian cdf with uni-
tary variance and correlation coefficient r, and Φ−1 is

3. The standard notation for the product copula is Π(u,v) = uv, however
we reserve this for possibility measures
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the inverse cdf of a standard normal Gaussian. Note that
CΦ
−1 =W , CΦ

0 = Ψ and CΦ
1 = M.

The inequality W ≤C ≤M suggests a partial ordering
on the set of all copulas [16]. This ordering is useful in the
preceding sections:

Definition 1 (Concordance ordering) If C1 and C2 are
copulas, we say that C1 is smaller than C2 (or C2 is larger
than C1), and write C1 ≺ C2 (or C2 � C1) if C1(u,v) ≤
C2(u,v) for all (u,v) ∈ [0,1]2.

Furthermore, two random variables X and Y are positive
quadrant dependent if Ψ≺CXY and are negative quadrant
dependent if Ψ�CXY .

Sklar’s theorem has been extended to an imprecise set-
ting by several authors. Montes et al. [15] describe an im-
precise version of Sklar’s theorem for the construction of
multivariate p-boxes from two marginal p-boxes and an
imprecise copula (bounded set of copulas). Schmelzer [18]
investigates when copulas can be used to describe or model
the dependence of belief functions. He demonstrates that in
the general case a joint belief measure cannot be related to
its margins by a single copula; except in the special cases
that the belief function is a p-box (cumulative belief func-
tion) or a possibility distribution (minitive belief function).
He further describes a version Sklar’s theorem for minitive
belief functions [19], stated in the language of possibility
theory:

Theorem 3 (Sklar’s theorem for minitive beliefs) Let
NXY : B2 → [0,1] be a bivariate necessity measure with
marginal necessity measures NecX and NecY . There exists
a copula C such that for all UX ∈BX , UY ∈BY :

NecXY (UX ,UY ) =C(NecX (UX ),NecY (UY )). (17)

The copula is uniquely determined on support NecX ×
support NecY .

The copula C in Theorem 3 characterises the joint distri-
bution of the alpha cuts (focal elements) of two marginal
possibility distributions (consonant belief functions). For
example, C = Ψ would give random set independence be-
tween the belief functions corresponding to πX and πY . In
that respect, Theorem 3 gives a form of random set depen-
dence for consonant random sets. Section 7 discusses some
implications of this.

Theorem 3 may be used in an α-cut-based implementa-
tion of possibilistic arithmetic under a given copula, where
interval arithmetic is performed on α-cuts correlated by
copula C. In Section 4 we show how arithmetic operations
may be performed when a copula C is known, giving a
possibilistic analogue to (1). Section 5 describes how arith-
metic may be performed when only bounds to C are known,
giving an analogue to (2)-(3).

4. Arithmetic with Known Dependence
Because a possibility distribution specifies a consonant
belief function with nested focal elements, i.e. a necessity
measure: given πX , πY with α-cuts Cαx

πX and Cαy
πY correlated

by copula CXY , the basic mass assignment on the cartesian
product of two cuts is computed by the Möbius inverse:

m(Cαx
πX
×Cαy

πY ) =

∑
UX⊆Cαx

πX ,UY⊆C
αy
πY

(−1)|C
αy
πX \UX |+|C

αy
πY \UY |NecXY (UX ,UY ),

(18)

where NecXY is the bivariate necessity, which may be de-
fined in terms of CXY using Theorem 3. Proof of (18) may
be found in [17]. This mass assignment may be thought of
as the joint probability density of the α-cuts under copula
CXY . A non-decreasing function with an interval extension
f : B+×B+→B+ may then be performed on the α-cuts:

KZ = f (Cαx
πX
,Cαy

πY ), (19)

where KZ are the focal elements of the output belief func-
tion BelZ of πX and πY under operation f . The mass assign-
ment m of these focal elements is retained by the images
[25]:

m(KZ) = m( f (Cαx
πX
×Cαy

πY )) = m(Cαx
πX
×Cαy

πY ). (20)

The necessity of the resulting random set may be found by
computing the belief:

Nec(KZ) = ∑
U⊆KZ

m(U). (21)

In the case where BelZ is consonant, the focal elements
KZ are α-cuts of the corresponding possibility distribution,
with the α-level found using (11):

αZ = 1− ∑
U⊆KZ

m(U). (22)

Therefore, for a non-decreasing function f with an inter-
val extension, a dependent possibilistic arithmetic with a
precise dependence may be defined in terms of α-cuts:

Cαz
πZ = f (Cαx

πX
,Cαy

πY ), (23)

for z = f (x,y) and with αz given by:

αZ = 1− ∑
UZ⊆ f (Cαx

πX ,Cαy
πY )

m(UZ), (24)

with the mass assignment given by (18) and Theorem 3.
Notice in the above that the α-levels αx, αy may be distinct,
so therefore f (Cαx

πX ,C
αy
πY ) may lead to a non-consonant be-

lief function, for which an outer approximation may be
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OUTPUT

IP-p-Transform

CXY = W
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�0.3
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0.3
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= CF
0.3

= CF
0.8

= M

1

Figure 1: An example of the imprecise probability-to-
possibility transformation. Above shows the fo-
cal elements (of equal mass) of a non-consonant
belief function. Below shows the possibility dis-
tribution retrieved from the transformation.

found via the imprecise probability-to-possibility trans-
form. Figure 1 shows an example of this. The above shows
the focal elements of the belief function BelZ found from
the product of two triangular fuzzy numbers πX = (1,2,3)
(range = [1,3] and core = 2) and πY = (1,2,10) using (23)
with CXY = Ψ (random set independence). Below in Fig-
ure 1 shows the possibility distribution πZ retrieved from
the imprecise probability-to-possibility transformation of
BelZ . The credal set induced by πZ is an outer approxi-
mation to the credal set from BelZ , i.e. P(BelZ)⊆ C(πZ).
Due to (9) it is sufficient to check that the necessity of
πZ is a lower bound on BelZ on the α-cuts of πZ , i.e.
NecX (Cαz

πZ )≤ BelZ(Cαz
πZ ), which is a construct of the trans-

formation.

Figure 2 shows (23) evaluated for the sum of two identi-
cal triangular πx,πy = (1,2,3) with various CXY . A Gaus-
sian copula has been used for CXY , varying its parameter
from −1 to 1. Note that any copula may be used for CXY ,
the Gaussian copula family is only used as a convenient
example, since it contains the copulas W , Ψ, and M. The
possibility distributions πX and πY also do not necessarily
have to be identical, triangular, nor uni-modal.

OUTPUT

IP-p-Transform

CXY = W

= CF
�0.8

= CF
�0.3

= Y

= CF
0.3

= CF
0.8

= M

CXY = W

= CF
�0.8

= CF
�0.3

= Y

= CF
0.3

= CF
0.8

= M

1

Figure 2: Sum of the two triangular fuzzy numbers
πx,πy = (1,2,3) with various precise copulas
specified.

Figure 2 has some interesting special cases. CXY = M
(perfect dependence) matches a levelwise interval arith-
metic:

Cα
πZ

= f (Cα
πX
,Cα

πY
), (25)

and gives the same result as (10) with Jmin, which is
Zadeh’s classical extension principle. CXY =W (opposite
dependence) matches an opposite levelwise arithmetic:

Cα
πZ

= f (Cα
πX
,C1−α

πY
). (26)

Although in this paper we provide no proof of (25) and
(26), and are conjectured based on the observed possibility
distributions produced by (23), the rationale is as follows.
Theorem 3 characterises the bivariate distribution of the
α-cuts of πX and πY as copula CXY , with probability mass
given by (18). The copula CXY =W only has non-zero prob-
ability mass on the opposing diagonal of the unit square,
i.e. when u = 1− v. Therefore only opposing α-cuts will
be assigned a positive (and equal) mass by (18) under W ,
and so are the only α-cuts needed to be considered in an
evaluation of (23) when CXY =W . A similar argument can
be made for CXY = M, which only has positive mass on
the diagonal u = v. A proof may be constructed by show-
ing that for CXY =W (= M), the Möbius inverse (18) only
gives a non-zero mass on α-cuts αX = 1−αY (= αY ).

Note that although (25) will always produce a consonant
structure, (26) may require an imprecise probability-to-
possibility transformation. In the case two identical πX =
πY , (26) with f = sum produces an interval, shown in red
in Figure 2. It would be interesting to find for which inputs,
operators and copulas (23) produces intervals.

Like for the convolutions of p-box arithmetic, we extend
(23) to non-increasing binary operations by first applying
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Figure 3: Subtraction, multiplication, and division of πx,πy = (1,2,3) with various precise copulas specified.

an appropriate unary operation to one of the inputs and
evaluating the function with a non-decreasing binary opera-
tion. For example a dependent subtraction between πX and
πY may be evaluated as

Cαx
πX

+(−Cαy
πY ), (27)

where the negation is performed levelwise on α-cuts of πY .
Similarly division may be evaluated with a reciprocate and
product:

Cαx
πX
∗ (1/Cαy

πY ). (28)

However when evaluating these non-increasing operations,
CX ,−Y and CX ,1/Y must be used, which may be found by a
simple transformation of CXY [16]:

CXβ (Y )(u,v) = u−CXY (u,1− v), (29)

where β is a strictly decreasing function on the support of
Y . This gives the following mapping between copulas:

M 7→W,

W 7→M,

Ψ 7→Ψ,

CΦ
r 7→CΦ

−r.

The parameter of the Gaussian copula is negated due the
symmetry of the Gaussian copula. Figure 3 shows the de-
pendent subtraction, multiplication and division between
πX ,πY = (1,2,3) for various Gaussian copulas. Note that
for f = {−,/} transformation (29) has been applied, and
so CXY =W gives levelwise arithmetic and CXY = M gives
opposite levelwise arithmetic.

Equation (18) with Theorem 3 also implies a correlated
random α-cut slicing strategy for propagating πX ,πY under
CXY , where random values of αX and αY may be simulated
from CXY :

(αX ,αY )∼CXY , (30)

followed by an evaluation of (23). Again the resulting be-
lief function may be made consonant with an imprecise
probability-to-possibility transformation. This correlated
random α-cut slicing method produces an inner approxi-
mation to the results of Figures 2 and 3 when finite samples
are used.

5. Arithmetic with Partially Known
Dependence

Sklar’s theorem for minitive beliefs may be used in a de-
pendent possibilistic arithmetic where only the bounds
to copulas are known, whereby interval arithmetic may
be performed on α-cuts of two possibility distributions,
with resulting α-level of the output being found using
Theorem 3. Because the necessity measure of an α-cut
is: NX (Cα

πX
) = 1−α , the belief of the image f (Cα

πX
,Cα

πY
)

can be bounded by

BelZ( f (Cα
πX
,Cα

πY
))≥ NecXY (Cα

πX
,Cα

πY
)

=C(1−α,1−α).
(31)

Choosing the candidate possibility distribution qZ such
that its α-cuts are given by these images, i.e. Cα

qZ
=

f (Cα
πX
,Cα

πY
), immediately implies that they are also the 1−

C(1−α,1−α)-cuts of a robust outer approximation πZ
of BelZ under the imprecise probability-to-possibility trans-
form in Equation (12). So, for some non-decreasing func-
tion with an interval extension f : B+×B+→B+, two
possibility distributions πX and πY with alpha cuts Cα

πX
and

Cα
πY

correlated by copula CXY , an outer approximation of
z = f (x,y) may be found as:

C1−CXY (1−α,1−α)
πZ = f (Cα

πX
,Cα

πY
). (32)

The image of the marginal input α-cuts of X and Y consti-
tutes the output 1−CXY (1−α,1−α)-cut of πZ . However,
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Figure 4: Sum of πx,πy = (1,2,3) with various copula
lower bounds specified.

if C1 ≺C2 then

C1(1−α,1−α)≤C2(1−α,1−α),

and using Sklar’s theorem for minitive beliefs:

NecC1
XY ≤ NecC2

XY , (33)

and which also from (32) gives

πC1
Z ≥ πC2

Z . (34)

Moreover, from (31) if NecC2
XY is a robust approximation of

BelC2
Z , then so is NecC1

XY ; i.e.

NecC1
XY ≤ NecC2

XY ≤ BelC2
Z , (35)

for any C1 ≺C2. The copula in (32) may therefore be re-
placed by a lower bound:

C1−CXY (1−α,1−α)
πZ = f (Cα

πX
,Cα

πY
), (36)

since (32) will compute a robust outer approximation belief
functions propagated with all copulas CXY ≺C. The above
equation gives, for a non-decreasing function, a levelwise
α-cut based arithmetic for possibility distributions when
only a lower bound on a copula is known. The α-level of
the images is a simple scaling of α using CXY .

Figure 4 shows (36) evaluated for the sum of πx,πy =
(1,2,3) and various CXY . A Gaussian copula has been
used for CXY , varying its parameter from −1 to 1. When
CXY = W (the lower bound on all copulas), (36) gives
Fréchet, corresponding to the sum under unknown depen-
dence between πX and πY . The computed possibility distri-
bution πW

Z is greater than (i.e. it encloses) the possibility
distributions calculated under any other copula πC

Z , since

W ≺C for any C. It also encloses all those shown in Figure
2. It does not tightly enclose all those from Figure 2 since
the example only shows several Gaussian copulas, whilst
πW

Z bounds those propagated using any copula (including
non-Gaussian). CXY = Ψ corresponds to positive quadrant
dependent arithmetic, and propagates all copulas greater
than Ψ. As expected, the computed πΨ

Z is greater than or
equal to those in Figure 2 propagated with the precise copu-
las CXY = {Ψ,CΦ

0.3,C
Φ
0.8,M}, but not those propagated with

CXY = {CΦ
−0.3,C

Φ
−0.8,W}. CXY = M specifies a precise cop-

ula CXY = M, and levelwise arithmetic is retrieved.
Only the lower bound on CXY plays a role in (36). This is

because CXY ≺CXY gives πCXY
Z ≥ πCXY

Z . That is, the result
computed with the lower bound will always enclose the
result from the upper bound. A similar situation occurs
with the τ and ρ convolutions in p-box arithmetic.

Note that (36) with CXY = M gives the same results
as (10) using Jmin, CXY = Ψ gives (10) using JSI, and
CXY = W gives (10) using JUI. This suggests the gener-
alised extension principle with aggregation operations of
[12] corresponds to an imprecise propagation of dependen-
cies, as opposed to a precise one.

Like in Section 4, and Williamson and Downs for the τ
and ρ convolutions in p-box arithmetic, we extend (36) to
non-increasing binary operations by first transforming one
of the inputs and performing a non-decreasing binary oper-
ation. The copula must also be appropriately transformed.
Note that if X and Y are positive quadrant dependent, then
X and −Y (and X and 1/Y ) will be negative quadrant de-
pendent [16]. The outcome of this is, like for the τ and
ρ convolutions, that the copula’s upper bound is used in-
stead of the lower bound, i.e. τΨ,− and ρΨ,− compute a
p-box which bounds negative quadrant dependence and
τM,− and ρM,− give Fréchet for subtraction. Therefore for
a non-increasing binary operations, (36) is computed as:

C1−C∗XY (1−α,1−α)
πZ = f (Cα

πX
,Cα

πY
), (37)

where C∗XY is the appropriate transformation of the copula’s
upper bound. For f = {−,/}, this transformation is (29):

C∗XY (u,v) = u−CXY (u,1− v),

C∗XY (1−α,1−α) = 1−α−CXY (1−α,α),

and (37) becomes:

Cα+CXY (1−α,α)
πZ = f (Cα

πX
,Cα

πY
). (38)

As opposed to (36), for πZ produced by (38) C1 ≺C2 gives
πC1

Z ≤ πC2
Z .

Figure 5 shows subtraction and division evaluated with
(38) and multiplication with (36) for πX ,πY = (1,2,3)
with various Gaussian copulas as bounds. For f = {−,/}:
CXY = M gives Fréchet, CXY = Ψ gives negative quad-
rant dependence, and CXY = W gives levelwise arith-
metic. When comparing the results from the precise cop-
ula calculation in Figure 3, the computed πΨ

Z using CXY
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Figure 5: Subtraction, multiplication, and division of πx,πy = (1,2,3) with various copulas copula bounds specified.

for f = {−,/} encloses those propagated with CXY =
{Ψ,CΦ

−0.3,C
Φ
−0.8,W}, but not those propagated with CXY =

{CΦ
0.3,C

Φ
0.8,M}, as expected for negative quadrant depen-

dence.

6. Relationship to p-box Arithmetic
In this section we compare our dependent possibilistic arith-
metic using precise CXY and imprecise CXY with the σ , τ ,
and ρ convolutions of p-box arithmetic. The method out-
lined in Section 4 may be considered a possibilistic ana-
logue to a σ convolution, and the methods of Section 5 are
a possibilistic analogue to the combination of a τ and ρ
convolution (one for each p-box bound).

Consider performing similar calculations with p-box
arithmetic. A possibility distribution πX may be converted
to a p-box by accumulating ΠX and NX :

FX (x) = PX (X ≤ x) = ΠX ((−∞,x]),

FX (x) = PX (X ≤ x) = NX ((−∞,x]), (39)

with the credal set defined by πX , C(πX ), being contained
in credal set defined by the p-box: C(πX ) ⊆ C([FX ,FX ])
[1]. Figure 6 is an illustration of the similarity between
the dependent arithmetic operations presented in this pa-
per to those from [24]. Beginning with the fuzzy numbers
πX ,πY = (1,2,3) in the centre left, they may be converted
into the p-box in the centre right. Several evaluations of
τ and ρ with different copula lower bounds will yield the
enclosing set of p-boxes on the top right, with Fréchet in
red and perfect in purple. A similar set of σ convolutions
yield the non-enclosing p-boxes on the bottom left, with the
purple being perfect and matching the purple p-box from
the τ-ρ convolution. Red (opposite) is an interval. The τ-ρ
p-boxes calculated with copula CXY enclose all p-boxes pro-
duced with copulas C which are greater CXY ≺C, for both
σ and τ-ρ calculations. An identical behaviour can be seen
in the dependent possibilistic arithmetic. Arithmetic with
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Figure 6: Illustration of the similarity between the depen-
dent possibilistic operations derived in this paper
to those from p-box arithmetic. The colours and
copulas are the same as Figures 2 and 4.
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CXY produces a set of enclosing fuzzy numbers. Precise
propagation produces results which are not self enclosing,
but match the imprecise propagation when CXY = M and
give an interval when CXY =W . The CXY calculation also
encloses all possibility distributions calculated with copu-
las C which are greater CXY ≺C, for both the precise and
imprecise cases.

Furthermore, when the πCXY
Z and πCXY

Z possibility distri-
butions are converted to p-boxes, the σ and τ-ρ p-boxes
are retrieved. Note that here we are not stating that the
p-boxes produced both ways are equivalent, nor that depen-
dent arithmetic and ‘building a p-box’ commute. Figure 6
only serves as a comparison. However from the conducted
numerical example the p-box bounds from both approaches
are very similar. Performing a more rigorous mathematical
or numerical study about the agreement of the two methods
should be pursued. Particularly a comparison of the credal
sets produced by both methods is interesting. A situation
similar to Figure 6 can be observed for the other binary
operations.

The numerical approaches for computing dependent π
and p-box operations are also quite similar. For example in
both approaches it is computationally simpler to calculate
with an imprecise copula. A σ convolution requires a cumu-
lative integration of a joint probability measure over an in-
creasing domain defined by f . As outlined in [24], this may
be done in terms of a number of discrete quasi-inverses of
the quantiles of a p-box. The probability measure induced
by a copula on this discretisation is found, followed by an
operation f of these inverses and an outer approximation
of the integral. Similarly, our precise CXY operation may be
performed by finding the probability measure induced by
a copula on some discrete number of α-cuts, followed by
an interval operation on these cuts and a outer approxima-
tion of the resulting belief function, which involves large
sums over mass assignments. The τ and ρ convolutions
on the other had only require the infimum and supremum
of the joint cdf to be found in some domain, which may
also be outer approximated in term of the quasi-inverses.
Our imprecise propagation of CXY only requires a scaled
levelwise arithmetic, and thus requires less interval opera-
tions and no (explicit) imprecise probability-to-possibility
transformation.

In the context of propagating dependencies, these latest
additions to possibilistic arithmetic give it the same capa-
bilities as p-box arithmetic, allowing for any dependence
or partial dependence to be specified as a copula. This
provides a basis for a p-box/possibility hybrid arithmetic
which gives tighter bounds on the exact upper and lower
probabilities than either method independently for the prop-
agation of general belief functions. Baudrit and Dubois
[1] discuss how well possibility distributions and p-boxes
bound general belief functions, and on which events do
these two imprecise representations return a tight bound on

the belief and plausibility. P-boxes return tight probability
bounds in their tail regions, whilst return vacuous proba-
bility intervals [0,1] in their central regions. Conversely
possibility distributions return vacuous intervals in their
tails and tight probability bounds in their centre. Since
these two imprecise structures bound a belief function in
opposing ways, their arithmetics may be combined to give
a tighter propagation of a general belief function than either
method individually. The results of this paper provide a
means to perform the dependent binary operations on pos-
sibility distributions previously only available to p-boxes.

7. Discussion

Theorem 3 gives a form of random set dependence between
possibility distributions. It should be noted however that it
is unclear how the dependence between the α-cuts relates to
the dependence of the distributions in the credal set C(πXY ).
That is to say, Theorem 3 does not imply that

C(FX ,FY ) ∈ C(πXY ) (40)

for all FX ∈ C(πX ) and FY ∈ C(πX ), and where C(πXY ) is
the credal set of bivariate distributions induced by Theorem
3. Further investigation is required to find if (40) holds, and
its implication for dependent possibilistic arithmetic. Couso
et al. [3] do however show that for the case of independence,
a set of joint dfs for variables that are strongly independent
(i.e. H(u,v) = F(u)G(v)) is a subset of the distributions
under random set independence [10].

Schmelzer further makes the distinction between bivari-
ate minitive belief functions and joint minitive belief func-
tions [20], where the later are belief functions defined on
product spaces of focal elements, and also account for the
shape of the joint focal elements. He argues that joint belief
functions provide an upper bound on a set of joint probabil-
ity measures, and studies the relationship between bivariate
and joint belief functions, and their relation to copulas.

Note that we only show examples of f = {+,−,∗,/},
however the described methods may be ready expanded to
any non-increasing and non-decreasing binary operation.

Software

The methods developed in this paper are made available in
an open-source Julia package for performing dependent
possibilistic arithmetic: https://github.com/
AnderGray/PossibilisticArithmetic.jl.
The figures of this paper may be reproduced by running
the scripts found in examples/ISIPTA2021. The p-box
arithmetic used in this paper was performed using the
open-source Julia package: https://github.com/
AnderGray/ProbabilityBoundsAnalysis.jl
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