
NONLINEAR DESIRABILITY

Appendix A. Proofs of the main results
Proposition 21 Consider a set of gambles D ⊆L .

If it is closed under the supremum norm topology, then
it satisfies D4. Vice versa, if D satisfies also the following
property:

f ≥ g, g ∈D ⇒ f ∈D (22)

then D4 implies closure in the supremum norm topology.

Proof It is well-known that L is a Banach space under
the supremum norm and it is a linear topological space
(with finite dimension n in our case) under the topology
generated by the supremum norm (see [30]).

Now, consider D closed under the supremum norm topol-
ogy. Then, the limit of every convergent sequence ( fn){n∈N}
(respect to the supremum norm) with fn ∈D for every n,
must be contained in D . Consider then, a gamble f such
that f +δ ∈D for every δ > 0, then f + 1

n ∈D for every
n ∈ N∗. Its limit w.r.t. the supremum norm is f and, from
the closure of D , we know that f ∈D .

On the other hand, suppose D satisfies D4 and (22). Let
us consider a succession ( fn){n∈N} ∈ D convergent w.r.t.
the sumpremum norm to a gamble f ∈L . We know that for
every ε > 0 there exists N ∈N such that sup | fn− f |< ε for
all n≥ N. In particular, this means that there exist h ∈L
such that:

fn− f = h+−h−, sup |h|< ε (23)

hence:
f = ( fn +h−)−h+ (24)

but, fn +h− ∈D by hypothesis, and f = ( fn +h−)−h+ ≥
( fn +h−)− ε . Then f + ε ≥ ( fn +h−) ∈D , from which it
follows that f + ε ∈D . This procedure can be repeated for
every ε > 0. Then by D4, we have f ∈D .

Proof [Proof of Proposition 3] Consider a pair of
finite sets (A ,R) for which there exists a coher-
ent set of gambles D , such that D ⊇ A and D ∩
R = /0. Then, the minimal coherent set D that satis-
fies these conditions is E (A ) := posi(A ∪T ), where
posi(K ) :=

{
∑

r
j=1 λ j f j : f j ∈K ,λ j > 0,r ≥ 1

}
for ev-

ery K ⊆ L (Ω) and where K ′ of a set K ′ ⊆ L rep-
resents the closure of K ′ with respect to the supremum
norm topology. In fact, E (A ) is clearly the minimal set D
that satisfies D1 - D3 such that D ⊇ A . Then, thanks to
Proposition 21, E (A ) is the minimal coherent set D ′ such
that D ′ ⊇A and clearly, by hypothesis, we know also that
E (A )∩R = /0. This fact is also well-known in literature
[30].

However, E (A ), by definition, is a polyhedral (convex)
cone [1, Definition 2.3.2]. Indeed E (A ) can be rewritten
as:

E (A ) = posi(A ∪T ) =

C :=

{
g : g =

r

∑
j=1

λ j f j, f j ∈ (A ∪{Iωi}
n
i=1),r ≥ 1,λ j ≥ 0

}
where the last equality derives from the facts that: E (A ) =
posi(A ∪T ) is generated by the finite set (A ∪{Iωi}n

i=1);
C is already closed under the usual topology of Rn that
coincides with the closure with respect to the supremum
norm topology, for every topological space with n dimen-
sion [30, Appendix D]. The latter is true because, thanks
to the Minkowsky-Weyl theorem [1], we know that C is an
intersection of a finite number of closed halfspaces whose
bounding hyperspaces pass through the origin:

C = {g : gT
β j ≥ 0, j = 1, ...,N} (25)

with β j ∈ Rn. This concludes this part of the proof since
it tells us that there exists a binary piecewise linear classi-
fier PLC(·) with parameters β j, which classifies A ∪T ⊆
E (A ) = C =: {g ∈ L : PLC(g) = 1} as 1 and (R ∪F),
that has empty intersection with C, as −1.

Vice versa, consider a piecewise linearly separable pair
(A ∪T,R∪F) and a classifier PLC(·) ∈ PLC(A ∪T,R∪
F). Then:

{g : PLC(g) = 1}= {g : gT
β j ≥ 0, for all j = 1, ..,N}

(26)
for some β j ∈ Rn such that β ji ≥ 0, ∑i β ji = 1, for all i, j
(constraints on β j easily follow from the fact that PLC(·)
classifies T as 1). Hence there exists a linear prevision Pj,
such that Pj(g) = gT β j, for all g, for all j = 1, ...,N [30,
Section 2.8,Section 3.2]. Therefore we have:

{g : PLC(g) = 1}=
{g : Pj(g)≥ 0, for all j = 1, ..,N}= {g : P(g)≥ 0},

where P := min j{Pj} is a coherent lower prevision [30,
Theorem 3.3.3]. Hence, D := {g : PLC(g) = 1} is a coher-
ent set of gambles [30, Theorem 3.8.1].

In particular, we have also that A ⊆ {g : PLC(g) = 1}=
D and R ∩ ({g : PLC(g) = 1}= D) = /0 by hypotheses.

Proof [Proof of Proposition 5] Consider a piecewise
linearly separable pair (A ∪ T,R ∪ F) and a classifier
PLC(·) ∈ PLC(A ∪T,R ∪F) with parameters {β j}N

j=1.
Then, a classifier LCφ (·) of the type (5) with parameters

ω j = β j and β ′j = β j for all j = 1, ...,N, classifies A ∪T
as 1 and R ∪F as −1. Indeed, consider g ∈L and let us
define m := min(gT β1, . . . ,gT βN). Then:

N

∑
j=1

(φ j(g))T
β j =

N

∑
j=1

(IB j(g)g)
T

β j =
K

∑
k=1

gT
βk = Km,

where, for every j, B j are the partitions of the type 4 with
ω j = β j and gT βk = m, for all k = 1, ...,K, with 1≤K ≤N.
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Hence, g is classified in the same way by the classifiers
PLC(·) and LCφ (·). Therefore, in particular, if g∈ (A ∪T ),
m≥ 0 and hence ∑

N
j=1(φ j(g))T β j = Km≥ 0, if instead g∈

(R∪F) then m < 0 and hence ∑
N
j=1(φ j(g))T β j = Km < 0.

Vice versa, let us consider a Φ-separable pair (A ∪
T,R ∪F) and let us suppose the existence of a classifier
LCφ (·) ∈ LCΦ(A ∪ T,R ∪F) with parameters ω j = β ′j,

for all j = 1, ...,N. Let us define m′ :=min(gT β ′1, ...,g
T β ′N).

Then, for any g ∈L we have:

N

∑
j=1

(φ j(g))T
β
′
j =

K

∑
k=1

gT
β
′
k = Km′, (27)

where again gT β ′k =m′, for all k = 1, . . .K, with 1≤K ≤N.
Let us consider a binary piecewise linear classifier PLC(·)
with parameters {β ′j}N

j=1. Then, again, g is classified in the
same way by the classifiers LCφ (·) and PLC(·). This is in
particular true for g ∈A ∪T and g ∈R ∪F . This means
also that β ′j 
 0, for all j = 1, ..,N.

Lemma 22 If a set D ⊆L , satisfies D1, D3∗ and D4 then
it satisfies (22).

Proof Consider f ≥ g with g ∈ D . Then f = g+ t with
t ∈ T . For any ε > 0, f + ε = g+ t + ε . Moreover, we can
always find λ ∈ (0,1) such that λg≤ g+ ε .

Therefore, we have f + ε = λg + (1− λ ) (g+ε−λg)+t
1−λ

.

Now, g ∈D by hypothesis and (g+ε−λg)+t
1−λ

∈ T , so f + ε ∈
D . This can be repeated for every ε > 0, then f + ε ∈ D
for all ε > 0 that implies, by D4, that f ∈D .

Lemma 23 Given a pair of finite sets (A ,R) for which
there exists a convex coherent set of gambles D such that
D ⊇A and D ∩R = /0, then the minimal such set is D =
ch(A ∪T ).

Proof ch(A ∪T ) satisfies D1 by definition and D3* [24,
Theorem 6.2] and D4, thanks to Proposition 21.

Let us indicate with D(A ,R), the class of convex coher-
ent sets of gambles D such that D ⊇ A and D ∩R = /0.
Thanks to Lemma 22 and Proposition 21, every D ∈
D(A ,R), is a convex closed set (respect to the topology of
Rn or equivalently respect to the supremum norm topology)
that contains (A ∪T ).

Given the fact that ch(A ∪T )⊇A ∪T and, by defini-
tion, it is the intersection of all the closed (respect to the
topology of Rn or equivalently respect to the supremum
norm topology) and convex sets containing (A ∪T ), we
have that ch(A ∪T )⊆D , for all D ∈ D(A ,R).

But, every D ∈ D(A ,R), satisfies D ∩ (R ∪F) = /0.
Therefore, ch(A ∪T )∩ (R ∪F) = /0, and hence it is also
the smallest set D ∈ D(A ,R). This concludes the proof.

Lemma 24 Consider a finite set A ⊆L . Then:

ch(A ∪T )= ch+(A ∪{0}) := {g : g≥ f , f ∈ ch(A ∪{0}).

Proof First of all, we can observe that:

ch+(A ∪{0}) = {g : g≥ f , f ∈ ch(A ∪{0}) =
= ∑

i∈I
αigi + ∑

j∈J
γ je j =: ch(A ∪{0})+posi(e1, . . . ,en)

with I,J finite, gi ∈A ∪{0}, αi,γi≥ 0 and ∑i αi = 1, where
ei is the canonical basis in Rn and posi(e1, . . . ,en) is a con-
vex polyhedral cone. From [27, Corollary 7.1.b], it follows
that ch+(A ∪{0}) is a convex (closed) polyhedron. Hence
ch+(A ∪{0}) = ch+(A ∪{0}). Now, we divide the proof
in two parts.

• ch(A ∪T ) ⊆ ch+(A ∪{0}). Notice that, thanks to
the previous observation, it is sufficient to show that
ch(A ∪T )⊆ ch+(A ∪{0}). So, let us consider g ∈
ch(A ∪T ). By definition, we have:

g =
r

∑
k=1

λkgk

with λk ≥ 0, for all k = 1, ...,r, r ≥ 1, ∑
r
k=1 λk =

1, gk ∈ (A ∪T ). Let us indicate with IndA\T := {k ∈
{1, ...,r} such that : gk ∈ A \ T} and IndT := {k ∈
{1, ...,r} such that : gk ∈ T}. Then we have:

g≥ ∑
k∈IndA\T

λkgk + ∑
k∈IndT

λk0,

hence g ∈ ch+(A ∪{0}).
• ch+(A ∪ {0}) ⊆ ch(A ∪T ). By definition,

ch(A ∪T ) is a closed convex set that contains
T . Therefore, from Proposition 21 and Lemma 22, we
have:

ch(A ∪{0})⊆ ch(A ∪T )⇒

ch+(A ∪{0})⊆ ch(A ∪T ).

Proof [Proof of Proposition 8] Consider a pair of sets
(A ,R) for which there exists a convex coherent set of
gambles D , such that D ⊇ A and D ∩R = /0. Then the
minimal convex coherent set D , which satisfies these con-
ditions, is ch(A ∪T ). Thanks to Lemma 24, we know that
it can be rewritten as:

ch(A ∪T ) = ch+(A ∪{0}), (28)

where ch+(A ∪ {0}) is a convex polyhedron. Any con-
vex polyhedron can be written as an intersection of hyper-
spaces, whose border is a piecewise affine function. There-
fore, there exists a piecewise affine classifier PAC(·), such
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that ch(A ∪T ) = ch+(A ∪{0}) = {g : PAC(g) = 1}. Note
moreover that ch(A ∪T ) = {g : PAC(g) = 1} ⊇ (A ∪T )
and (ch(A ∪T ) = {g : PAC(g) = 1})∩ (R ∪F) = /0 by
construction.

Vice versa, consider a piecewise affine separable pair
(A ∪T,R∪F). Let us consider a piecewise affine classifier
PAC(·) ∈ PAC(A ∪T,R ∪F). Now, the set:

D :={g : PAC(g) = 1}=
{g : gT

β j +α j ≥ 0, for all j = 1, ...,N}

for some β j ∈ Rn with β j 
 0 and α j ∈ R for all j ∈
{1, . . .N}, is a convex coherent set of gambles such that
D ⊇A and D ∩R = /0. Indeed:

• T ⊆D and D ∩F = /0, by definition, hence it satisfies
D1 and D2;

• D satisfies D3∗. Consider g1,g2 ∈D . Then tg1+(1−
t)g2 ∈D , for all t ∈ [0,1]. Indeed,

(tg1 +(1− t)g2)
T

β j +α j =

(tg1)
T

β j +((1− t)g2)
T

β j + tα j +(1− t)α j =

t((g1)
T

β j +α j)+(1− t)(gT
2 β j +α j)≥ 0

for all j ∈ {1, ...,N}.
• D is closed in the usual topology of Rn because it

is the intersection of a finite number of closed half-
spaces hence, thanks to Proposition 21, it satisfies D4.

Clearly, by the fact that PAC(·) ∈ PAC(A ∪T,R∪F), it is
also true that A ⊆D and D ∩R = /0.

Proof [Proof of Proposition 10]
Consider a piecewise affine separable pair (A ∪T,R ∪

F) and a classifier PAC(·) ∈ PAC(A ∪T,R ∪F) with pa-
rameters {β j,α j}N

j=1.
Then, a classifier LCψ(·) of the type (11) with parameters

ω ′j = β ′j =

[
β j
α j

]
, for all j = 1, ...,N, classifies A ∪T as 1

and R∪F as −1. Indeed, consider g ∈L and let us define
m := min(gT β1 +α1, . . . ,gT βN +αN). Then:

N

∑
j=1

(ψ j(g))T
[

β j
α j

]
=

N

∑
j=1

(
IB′ j

([
g
1

])[
g
1

])T [
β j
α j

]
=

K

∑
k=1

(gT
βk +αk) = Km,

where, for every j, B′ j are the partitions of the type 10
with ω ′j = β j and gT βk + αk = m, for any k = 1, ...,K,
with 1≤ K ≤ N. Hence, g is classified in the same way by
the classifiers PAC(·) and LCψ(·). Therefore, in particular,

if g ∈ (A ∪ T ), m ≥ 0 and hence ∑
N
j=1(ψ j(g))T

[
β j
α j

]
=

Km ≥ 0, if instead g ∈ (R ∪ F) then m < 0 and hence

∑
N
j=1(ψ j(g))T

[
β j
α j

]
< 0.

Vice versa, let us consider a Ψ-separable pair (A ∪
T,R ∪F) and let us suppose the existence of a classifier
LCψ(·) ∈ LCΨ(A ∪T,R ∪F) with parameters ω ′j = β ′j,

for all j = 1, ...,N. Let us define m′ := min(gT β ′1,1:n +

β ′1,n+1, ...,g
T β ′N,1:n + β ′N,n+1). Then, for any g ∈ L , we

have:

N

∑
j=1

(ψ j(g))T
β
′
j =

K

∑
k=1

(gT
β
′
k,1:n +β

′
k,n+1) = Km′,

where β ′k,1:n is the vector containing the first n components
of β ′k, for every k, and where again (gT β ′k +β ′k,n+1) = m′,
for all k = 1, . . .K, with 1 ≤ K ≤ N. Let us consider a
binary piecewise affine classifier PAC(·) with parameters
{β ′j,1:n,β

′
j,n+1}N

j=1. Then, again, g is classified in the same
way by the classifiers LCψ(·) and PAC(·). This is in partic-
ular true for g ∈ A ∪T and g ∈R ∪F . This means also
that β ′j,1:n 
 0, for all j = 1, ..,N and β ′j,n+1 ≥ 0, for all
j = 1, ..,N, with at least a β ′k,n+1 = 0.

Lemma 25 Given a pair of finite sets (A ,R) for which
there exists a positive additive coherent set of gambles D ,
such that D ⊇A and D ∩R = /0, then the smallest such
set is:

D =↑ (A ∪{0}) := {g : (∃ f ∈A ∪{0}) g≥ f}.

Proof ↑ (A ∪{0}) satisfies D1, D3∗∗ and A ⊆↑ (A ∪
{0}) by construction. Moreover, it satisfies also D4 by
Proposition 21, because it is closed respect to the usual
topology of Rn (it is a finite union of closed sets).

Let us indicate with P(A ,R), the class of positive
additive coherent sets of gambles D , such that D ⊇ A
and D ∩R = /0. Clearly, each D ∈ P(A ,R) satisfies
D ⊇↑ (A ∪{0}). But, every D ∈ P(A ,R), satisfies also
D ∩ (R ∪F) = /0. Therefore, ↑ (A ∪{0})∩ (R ∪F) = /0.
So, it is also the smallest positive additive coherent set of
gambles D ∈ P(A ,R).

Proof [Proof of Proposition 13] Consider a pair of sets
(A ,R) for which there exists a positive additive coherent
set of gambles D , such that D ⊇A and D ∩R = /0. Then
the minimal such set is ↑ (A ∪{0}). However, it can be
rewritten as:

↑ (A ∪{0}) = {g ∈L : PWPC(g) = 1}

where PWPC(·) is a PWP classifier, defined as:

PWPC(g) :=

{
1 if ∃ f j ∈ (A ∪{0}) s.t. g≥ f j,

−1 otherwise.

Therefore, given that A ∪ T ⊆↑ (A ∪ {0}) = {g :
PWPC(g) = 1} and (↑ (A ∪ {0}) = {g : PWPC(g) =
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1})∩ (R ∪F) = /0, we have that (A ∪T,R ∪F) is PWP
separable. Vice versa, consider a PWP separable pair
(A ∪T,R ∪F) and a classifier PWPC(·) ∈ PWPC(A ∪
T,R ∪F). Then:

D := {g : PWPC(g) = 1}

is, by construction, a positive additive coherent set of gam-
bles. Indeed, it clearly satisfies D1, D2, D3∗∗. Further, it
is closed because it is a finite intersection of closed sets
(respect to the usual topology of Rn) hence, by Proposition
21, it satisfies D4. It satisfies also D ⊇A and D ∩R = /0
by hypothesis.

Proof [Proof of Proposition 15] Consider a PWP sepa-
rable pair (A ∪ T,R ∪ F) and a classifier PWPC(·) ∈
PWPC(A ∪T,R ∪F) with parameters F = { f j}N

j=1.
Then, a classifier LCρ(·) of the type (14), with parame-

ters ω j = f j and β ′j =



1
. . .
1
− f j

1
. . .

− f j
n

, for all j = 1, . . . ,N, classi-

fies A ∪T as 1 and R ∪F as −1.
Indeed,consider g ∈ L and let us define m :=

maxk(minl(gl− f k
l )). Then:

N

∑
j=1

(ρ j(g))T
β
′
j =

N

∑
j=1

n

∑
i=1
Iζi j(g)(gi− f j

i ) = KLm

where, for every i, j, ζi j are the partitions of the type 13
with ω j = f j and where 1≤ L≤ n, 1≤ K ≤ N. Hence, g
is classified in the same way by the classifiers PWPC(·)
and LCρ(·). Therefore, in particular, if g ∈ (A ∪T ), m≥ 0
and hence LCρ(g) = 1. If instead g ∈ (R ∪F) then m < 0
and hence LCρ(g) =−1.

Vice versa, let us consider a P-separable pair (A ∪
T,R ∪ F) and let us suppose the existence of a classi-
fier LCρ(·)∈ LCP(A ∪T,R∪F) with parameters {β ′j}N

j=1

such that β ′j,i > 0, and ω
j

i =−β ′j,i+n
β ′j,i

for all i = 1, ..,n, j =

1, ...,N. Let us define m′ := maxk(minl(gl − (−
β ′k,l+n

β ′k,l
))).

Then, for any g ∈L :

N

∑
j=1

(ρ j(g))T
β
′
j =

N

∑
j=1

n

∑
i=1
Iζi, j(g)(β

′
j,igi +β

′
j,i+n) =

N

∑
j=1

n

∑
i=1

β
′
j,iIζi, j(g)(gi− (−β ′j,i+n

β ′j,i
)),= m′

K

∑
j=1

L

∑
i=1

β
′
j,i

with 1 ≤ K ≤ N, 1 ≤ L ≤ n. Let us consider a PWP clas-
sifier PWPC(·) with parameters F = { f j}N

j=1, such that

f j
i =−β ′j,i+n

β ′j,i
, for all i, j. Then, again, g is classified in the

same way by the classifiers LCρ(·) and PWPC(·). This is
in particular true for g ∈A ∪T and g ∈R ∪F .
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