Appendix A. Proofs of the main results

Proposition 21 Consider a set of gambles $\mathscr{D} \subseteq \mathscr{L}$.

If it is closed under the supremum norm topology, then it satisfies D4. Vice versa, if \mathcal{D} satisfies also the following property:

$$f \ge g, \ g \in \mathscr{D} \Rightarrow f \in \mathscr{D} \tag{22}$$

then D4 implies closure in the supremum norm topology.

Proof It is well-known that \mathcal{L} is a Banach space under the supremum norm and it is a linear topological space (with finite dimension *n* in our case) under the topology generated by the supremum norm (see [30]).

Now, consider \mathscr{D} closed under the supremum norm topology. Then, the limit of every convergent sequence $(f_n)_{\{n \in \mathbb{N}\}}$ (respect to the supremum norm) with $f_n \in \mathscr{D}$ for every n, must be contained in \mathscr{D} . Consider then, a gamble f such that $f + \delta \in \mathscr{D}$ for every $\delta > 0$, then $f + \frac{1}{n} \in \mathscr{D}$ for every $n \in \mathbb{N}^*$. Its limit w.r.t. the supremum norm is f and, from the closure of \mathscr{D} , we know that $f \in \mathscr{D}$.

On the other hand, suppose \mathscr{D} satisfies D4 and (22). Let us consider a succession $(f_n)_{\{n \in \mathbb{N}\}} \in \mathscr{D}$ convergent w.r.t. the sumpremum norm to a gamble $f \in \mathscr{L}$. We know that for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $\sup |f_n - f| < \varepsilon$ for all $n \ge N$. In particular, this means that there exist $h \in \mathscr{L}$ such that:

$$f_n - f = h^+ - h^-, \sup|h| < \varepsilon \tag{23}$$

hence:

$$f = (f_n + h^-) - h^+ \tag{24}$$

but, $f_n + h^- \in \mathscr{D}$ by hypothesis, and $f = (f_n + h^-) - h^+ \ge (f_n + h^-) - \varepsilon$. Then $f + \varepsilon \ge (f_n + h^-) \in \mathscr{D}$, from which it follows that $f + \varepsilon \in \mathscr{D}$. This procedure can be repeated for every $\varepsilon > 0$. Then by D4, we have $f \in \mathscr{D}$.

Proof [Proof of Proposition 3] Consider a pair of finite sets $(\mathscr{A},\mathscr{R})$ for which there exists a coherent set of gambles \mathscr{D} , such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$. Then, the minimal coherent set \mathscr{D} that satisfies these conditions is $\mathscr{E}(\mathscr{A}) := \operatorname{posi}(\mathscr{A} \cup T)$, where $\operatorname{posi}(\mathscr{K}) := \left\{ \sum_{j=1}^{r} \lambda_j f_j : f_j \in \mathscr{K}, \lambda_j > 0, r \ge 1 \right\}$ for every $\mathscr{K} \subseteq \mathscr{L}(\Omega)$ and where $\overline{\mathscr{K}'}$ of a set $\mathscr{K}' \subseteq \mathscr{L}$ represents the closure of \mathscr{K}' with respect to the supremum norm topology. In fact, $\mathscr{E}(\mathscr{A})$ is clearly the minimal set \mathscr{D} that satisfies D1 - D3 such that $\mathscr{D} \supseteq \mathscr{A}$. Then, thanks to Proposition 21, $\overline{\mathscr{E}}(\mathscr{A})$ is the minimal coherent set \mathscr{D}' such that $\mathscr{D}' \supseteq \mathscr{A}$ and clearly, by hypothesis, we know also that $\mathscr{E}(\mathscr{A}) \cap \mathscr{R} = \emptyset$. This fact is also well-known in literature [30].

However, $\overline{\mathscr{E}(\mathscr{A})}$, by definition, is a polyhedral (convex) cone [1, Definition 2.3.2]. Indeed $\overline{\mathscr{E}(\mathscr{A})}$ can be rewritten as:

$$\mathscr{E}(\mathscr{A}) = \mathsf{posi}(\mathscr{A} \cup T) =$$

$$C := \left\{ g : g = \sum_{j=1}^r \lambda_j f_j, f_j \in (\mathscr{A} \cup \{\mathbb{I}_{\omega_i}\}_{i=1}^n), r \ge 1, \lambda_j \ge 0 \right\}$$

where the last equality derives from the facts that: $\mathscr{E}(\mathscr{A}) = \text{posi}(\mathscr{A} \cup T)$ is generated by the finite set $(\mathscr{A} \cup \{\mathbb{I}_{\omega_i}\}_{i=1}^n)$; *C* is already closed under the usual topology of \mathbb{R}^n that coincides with the closure with respect to the supremum norm topology, for every topological space with *n* dimension [30, Appendix D]. The latter is true because, thanks to the Minkowsky-Weyl theorem [1], we know that *C* is an intersection of a finite number of closed halfspaces whose bounding hyperspaces pass through the origin:

$$C = \{g : g^T \beta_j \ge 0, \ j = 1, ..., N\}$$
(25)

with $\beta_j \in \mathbb{R}^n$. This concludes this part of the proof since it tells us that there exists a binary piecewise linear classifier $PLC(\cdot)$ with parameters β_j , which classifies $\mathscr{A} \cup T \subseteq \overline{\mathscr{E}(\mathscr{A})} = C \eqqcolon \{g \in \mathscr{L} : PLC(g) = 1\}$ as 1 and $(\mathscr{R} \cup F)$, that has empty intersection with *C*, as -1.

Vice versa, consider a piecewise linearly separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $PLC(\cdot) \in PLC(\mathscr{A} \cup T, \mathscr{R} \cup F)$. Then:

$$\{g : PLC(g) = 1\} = \{g : g^T \beta_j \ge 0, \text{ for all } j = 1, ..., N\}$$
(26)

for some $\beta_j \in \mathbb{R}^n$ such that $\beta_{ji} \ge 0$, $\sum_i \beta_{ji} = 1$, for all i, j(constraints on β_j easily follow from the fact that $PLC(\cdot)$ classifies T as 1). Hence there exists a linear prevision P_j , such that $P_j(g) = g^T \beta_j$, for all g, for all j = 1, ..., N [30, Section 2.8, Section 3.2]. Therefore we have:

$$\{g : PLC(g) = 1\} =$$

 $\{g : P_j(g) \ge 0, \text{ for all } j = 1, ..., N\} = \{g : \underline{P}(g) \ge 0\},\$

where $\underline{P} := \min_j \{P_j\}$ is a coherent lower prevision [30, Theorem 3.3.3]. Hence, $\mathscr{D} := \{g : PLC(g) = 1\}$ is a coherent set of gambles [30, Theorem 3.8.1].

In particular, we have also that $\mathscr{A} \subseteq \{g : PLC(g) = 1\} = \mathscr{D}$ and $\mathscr{R} \cap (\{g : PLC(g) = 1\} = \mathscr{D}) = \emptyset$ by hypotheses.

Proof [Proof of Proposition 5] Consider a piecewise linearly separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $PLC(\cdot) \in PLC(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\{\beta_j\}_{j=1}^N$.

Then, a classifier $LC_{\phi}(\cdot)$ of the type (5) with parameters $\omega_j = \beta_j$ and $\beta'_j = \beta_j$ for all j = 1, ..., N, classifies $\mathscr{A} \cup T$ as 1 and $\mathscr{R} \cup F$ as -1. Indeed, consider $g \in \mathscr{L}$ and let us define $m := \min(g^T \beta_1, ..., g^T \beta_N)$. Then:

$$\sum_{j=1}^{N} (\phi_j(g))^T \beta_j = \sum_{j=1}^{N} (\mathbb{I}_{\mathscr{B}_j}(g)g)^T \beta_j = \sum_{k=1}^{K} g^T \beta_k = Km,$$

where, for every j, \mathscr{B}_j are the partitions of the type 4 with $\omega_j = \beta_j$ and $g^T \beta_k = m$, for all k = 1, ..., K, with $1 \le K \le N$.

Hence, *g* is classified in the same way by the classifiers $PLC(\cdot)$ and $LC_{\phi}(\cdot)$. Therefore, in particular, if $g \in (\mathscr{A} \cup T)$, $m \ge 0$ and hence $\sum_{j=1}^{N} (\phi_j(g))^T \beta_j = Km \ge 0$, if instead $g \in (\mathscr{R} \cup F)$ then m < 0 and hence $\sum_{j=1}^{N} (\phi_j(g))^T \beta_j = Km < 0$.

Vice versa, let us consider a Φ -separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and let us suppose the existence of a classifier $LC_{\phi}(\cdot) \in LC_{\Phi}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\omega_j = \beta'_j$, for all j = 1, ..., N. Let us define $m' := \min(g^T \beta'_1, ..., g^T \beta'_N)$. Then, for any $g \in \mathscr{L}$ we have:

$$\sum_{j=1}^{N} (\phi_j(g))^T \beta'_j = \sum_{k=1}^{K} g^T \beta'_k = Km',$$
(27)

where again $g^T \beta'_k = m'$, for all k = 1, ..., K, with $1 \le K \le N$. Let us consider a binary piecewise linear classifier $PLC(\cdot)$ with parameters $\{\beta'_j\}_{j=1}^N$. Then, again, g is classified in the same way by the classifiers $LC_{\phi}(\cdot)$ and $PLC(\cdot)$. This is in particular true for $g \in \mathscr{A} \cup T$ and $g \in \mathscr{R} \cup F$. This means also that $\beta'_j \ge 0$, for all j = 1, ..., N.

Lemma 22 If a set $\mathscr{D} \subseteq \mathscr{L}$, satisfies D1, D3^{*} and D4 then it satisfies (22).

Proof Consider $f \ge g$ with $g \in \mathcal{D}$. Then f = g + t with $t \in T$. For any $\varepsilon > 0$, $f + \varepsilon = g + t + \varepsilon$. Moreover, we can always find $\lambda \in (0, 1)$ such that $\lambda g \le g + \varepsilon$.

Therefore, we have $f + \varepsilon = \lambda g + (1 - \lambda) \frac{(g + \varepsilon - \lambda g) + t}{1 - \lambda}$. Now, $g \in \mathscr{D}$ by hypothesis and $\frac{(g + \varepsilon - \lambda g) + t}{1 - \lambda} \in T$, so $f + \varepsilon \in \mathscr{D}$. This can be repeated for every $\varepsilon > 0$, then $f + \varepsilon \in \mathscr{D}$ for all $\varepsilon > 0$ that implies, by D4, that $f \in \mathscr{D}$.

Lemma 23 Given a pair of finite sets $(\mathscr{A}, \mathscr{R})$ for which there exists a convex coherent set of gambles \mathscr{D} such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$, then the minimal such set is $\mathscr{D} =$ $\operatorname{ch}(\mathscr{A} \cup T)$.

Proof $\overline{ch}(\mathscr{A} \cup T)$ satisfies D1 by definition and D3* [24, Theorem 6.2] and D4, thanks to Proposition 21.

Let us indicate with $D(\mathscr{A}, \mathscr{R})$, the class of convex coherent sets of gambles \mathscr{D} such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$. Thanks to Lemma 22 and Proposition 21, every $\mathscr{D} \in$ $D(\mathscr{A}, \mathscr{R})$, is a convex closed set (respect to the topology of \mathbb{R}^n or equivalently respect to the supremum norm topology) that contains $(\mathscr{A} \cup T)$.

Given the fact that $ch(\mathscr{A} \cup T) \supseteq \mathscr{A} \cup T$ and, by definition, it is the intersection of all the closed (respect to the topology of \mathbb{R}^n or equivalently respect to the supremum norm topology) and convex sets containing $(\mathscr{A} \cup T)$, we have that $ch(\mathscr{A} \cup T) \subseteq \mathscr{D}$, for all $\mathscr{D} \in D(\mathscr{A}, \mathscr{R})$.

But, every $\mathcal{D} \in \mathbf{D}(\mathscr{A}, \mathscr{R})$, satisfies $\mathcal{D} \cap (\mathscr{R} \cup F) = \emptyset$. Therefore, $\operatorname{ch}(\mathscr{A} \cup T) \cap (\mathscr{R} \cup F) = \emptyset$, and hence it is also the smallest set $\mathcal{D} \in \mathbf{D}(\mathscr{A}, \mathscr{R})$. This concludes the proof.

Lemma 24 Consider a finite set $\mathscr{A} \subseteq \mathscr{L}$. Then:

$$\overline{\operatorname{ch}(\mathscr{A}\cup T)} = \operatorname{ch}^+(\mathscr{A}\cup\{0\}) \coloneqq \{g \colon g \ge f, f \in \operatorname{ch}(\mathscr{A}\cup\{0\}).$$

Proof First of all, we can observe that:

$$ch^{+}(\mathscr{A} \cup \{0\}) = \{g : g \ge f, f \in ch(\mathscr{A} \cup \{0\}) = \sum_{i \in I} \alpha_{i}g_{i} + \sum_{j \in J} \gamma_{j}e_{j} =: ch(\mathscr{A} \cup \{0\}) + posi(e_{1}, \dots, e_{n})$$

with *I*, *J* finite, $g_i \in \mathscr{A} \cup \{0\}$, $\alpha_i, \gamma_i \ge 0$ and $\sum_i \alpha_i = 1$, where e_i is the canonical basis in \mathbb{R}^n and $\text{posi}(e_1, \dots, e_n)$ is a convex polyhedral cone. From [27, Corollary 7.1.b], it follows that $\text{ch}^+(\mathscr{A} \cup \{0\})$ is a convex (closed) polyhedron. Hence $\overline{\text{ch}^+(\mathscr{A} \cup \{0\})} = \text{ch}^+(\mathscr{A} \cup \{0\})$. Now, we divide the proof in two parts.

ch(𝔄 ∪ T) ⊆ ch⁺(𝔄 ∪ {0}). Notice that, thanks to the previous observation, it is sufficient to show that ch(𝔄 ∪ T) ⊆ ch⁺(𝔄 ∪ {0}). So, let us consider g ∈ ch(𝔄 ∪ T). By definition, we have:

$$g = \sum_{k=1}^r \lambda_k g_k$$

with $\lambda_k \ge 0$, for all k = 1, ..., r, $r \ge 1$, $\sum_{k=1}^r \lambda_k = 1$, $g_k \in (\mathscr{A} \cup T)$. Let us indicate with $Ind_{A \setminus T} := \{k \in \{1, ..., r\} \text{ such that } : g_k \in \mathscr{A} \setminus T\}$ and $Ind_T := \{k \in \{1, ..., r\} \text{ such that } : g_k \in T\}$. Then we have:

$$g \geq \sum_{k \in Ind_{A \setminus T}} \lambda_k g_k + \sum_{k \in Ind_T} \lambda_k 0,$$

hence $g \in ch^+(\mathscr{A} \cup \{0\})$.

• $\frac{\mathrm{ch}^+(\mathscr{A} \cup \{0\})}{\mathrm{ch}(\mathscr{A} \cup T)} \subseteq \overline{\mathrm{ch}(\mathscr{A} \cup T)}$. By definition, $\frac{\mathrm{ch}(\mathscr{A} \cup T)}{\mathrm{ch}(\mathscr{A} \cup T)}$ is a closed convex set that contains *T*. Therefore, from Proposition 21 and Lemma 22, we have:

$$ch(\mathscr{A} \cup \{0\}) \subseteq \overline{ch(\mathscr{A} \cup T)} \Rightarrow$$
$$ch^{+}(\mathscr{A} \cup \{0\}) \subseteq \overline{ch(\mathscr{A} \cup T)}.$$

Proof [Proof of Proposition 8] Consider a pair of sets $(\mathscr{A}, \mathscr{R})$ for which there exists a convex coherent set of gambles \mathscr{D} , such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$. Then the minimal convex coherent set \mathscr{D} , which satisfies these conditions, is $\overline{ch}(\mathscr{A} \cup T)$. Thanks to Lemma 24, we know that it can be rewritten as:

$$\overline{\operatorname{ch}(\mathscr{A}\cup T)} = \operatorname{ch}^+(\mathscr{A}\cup\{0\}), \qquad (28)$$

where $ch^+(\mathscr{A} \cup \{0\})$ is a convex polyhedron. Any convex polyhedron can be written as an intersection of hyperspaces, whose border is a piecewise affine function. Therefore, there exists a piecewise affine classifier $PAC(\cdot)$, such

that $\overline{\operatorname{ch}(\mathscr{A} \cup T)} = \operatorname{ch}^+(\mathscr{A} \cup \{0\}) = \{g : PAC(g) = 1\}$. Note moreover that $\operatorname{ch}(\mathscr{A} \cup T) = \{g : PAC(g) = 1\} \supseteq (\mathscr{A} \cup T)$ and $(\overline{\operatorname{ch}(\mathscr{A} \cup T)} = \{g : PAC(g) = 1\}) \cap (\mathscr{R} \cup F) = \emptyset$ by construction.

Vice versa, consider a piecewise affine separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$. Let us consider a piecewise affine classifier $PAC(\cdot) \in PAC(\mathscr{A} \cup T, \mathscr{R} \cup F)$. Now, the set:

$$\mathcal{D} := \{g : PAC(g) = 1\} = \{g : g^T \beta_j + \alpha_j \ge 0, \text{ for all } j = 1, ..., N\}$$

for some $\beta_j \in \mathbb{R}^n$ with $\beta_j \ge 0$ and $\alpha_j \in \mathbb{R}$ for all $j \in \{1,...,N\}$, is a convex coherent set of gambles such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$. Indeed:

- $T \subseteq \mathscr{D}$ and $\mathscr{D} \cap F = \emptyset$, by definition, hence it satisfies D1 and D2;
- \mathscr{D} satisfies D3^{*}. Consider $g_1, g_2 \in \mathscr{D}$. Then $tg_1 + (1 t)g_2 \in \mathscr{D}$, for all $t \in [0, 1]$. Indeed,

$$(tg_1 + (1-t)g_2)^T \beta_j + \alpha_j = (tg_1)^T \beta_j + ((1-t)g_2)^T \beta_j + t\alpha_j + (1-t)\alpha_j = t((g_1)^T \beta_j + \alpha_j) + (1-t)(g_2^T \beta_j + \alpha_j) \ge 0$$

for all $j \in \{1, ..., N\}$.

D is closed in the usual topology of ℝⁿ because it
 is the intersection of a finite number of closed half spaces hence, thanks to Proposition 21, it satisfies D4.

Clearly, by the fact that $PAC(\cdot) \in PAC(\mathscr{A} \cup T, \mathscr{R} \cup F)$, it is also true that $\mathscr{A} \subseteq \mathscr{D}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$.

Proof [Proof of Proposition 10]

Consider a piecewise affine separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $PAC(\cdot) \in PAC(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\{\beta_j, \alpha_j\}_{j=1}^N$.

Then, a classifier $LC_{\psi}(\cdot)$ of the type (11) with parameters $\omega'_{j} = \beta'_{j} = \begin{bmatrix} \beta_{j} \\ \alpha_{j} \end{bmatrix}$, for all j = 1, ..., N, classifies $\mathscr{A} \cup T$ as 1 and $\mathscr{R} \cup F$ as -1. Indeed, consider $g \in \mathscr{L}$ and let us define $m := \min(g^{T}\beta_{1} + \alpha_{1}, ..., g^{T}\beta_{N} + \alpha_{N})$. Then:

$$\sum_{j=1}^{N} (\psi_j(g))^T \begin{bmatrix} \beta_j \\ \alpha_j \end{bmatrix} = \sum_{j=1}^{N} \left(\mathbb{I}_{\mathscr{B}'j} \left(\begin{bmatrix} g \\ 1 \end{bmatrix} \right) \begin{bmatrix} g \\ 1 \end{bmatrix} \right)^T \begin{bmatrix} \beta_j \\ \alpha_j \end{bmatrix} = \sum_{k=1}^{K} (g^T \beta_k + \alpha_k) = Km,$$

where, for every j, \mathscr{B}'_j are the partitions of the type 10 with $\omega'_j = \beta_j$ and $g^T \beta_k + \alpha_k = m$, for any k = 1, ..., K, with $1 \le K \le N$. Hence, g is classified in the same way by the classifiers $PAC(\cdot)$ and $LC_{\psi}(\cdot)$. Therefore, in particular, if $g \in (\mathscr{A} \cup T)$, $m \ge 0$ and hence $\sum_{j=1}^{N} (\psi_j(g))^T \begin{bmatrix} \beta_j \\ \alpha_j \end{bmatrix} =$ $Km \ge 0$, if instead $g \in (\mathscr{R} \cup F)$ then m < 0 and hence $\sum_{j=1}^{N} (\psi_j(g))^T \begin{bmatrix} \beta_j \\ \alpha_j \end{bmatrix} < 0$. Vice versa, let us consider a Ψ -separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and let us suppose the existence of a classifier $LC_{\Psi}(\cdot) \in LC_{\Psi}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\omega'_{j} = \beta'_{j}$, for all j = 1, ..., N. Let us define $m' := \min(g^{T}\beta'_{1,1:n} + \beta'_{1,n+1}, ..., g^{T}\beta'_{N,1:n} + \beta'_{N,n+1})$. Then, for any $g \in \mathscr{L}$, we have:

$$\sum_{j=1}^{N} (\psi_j(g))^T \beta'_j = \sum_{k=1}^{K} (g^T \beta'_{k,1:n} + \beta'_{k,n+1}) = Km',$$

where $\beta'_{k,1:n}$ is the vector containing the first *n* components of β'_k , for every *k*, and where again $(g^T \beta'_k + \beta'_{k,n+1}) = m'$, for all k = 1, ..., K, with $1 \le K \le N$. Let us consider a binary piecewise affine classifier $PAC(\cdot)$ with parameters $\{\beta'_{j,1:n}, \beta'_{j,n+1}\}_{j=1}^N$. Then, again, *g* is classified in the same way by the classifiers $LC_{\psi}(\cdot)$ and $PAC(\cdot)$. This is in particular true for $g \in \mathscr{A} \cup T$ and $g \in \mathscr{R} \cup F$. This means also that $\beta'_{j,1:n} \ge 0$, for all j = 1, ..., N and $\beta'_{j,n+1} \ge 0$, for all j = 1, ..., N, with at least a $\beta'_{k,n+1} = 0$.

Lemma 25 Given a pair of finite sets $(\mathscr{A}, \mathscr{R})$ for which there exists a positive additive coherent set of gambles \mathscr{D} , such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$, then the smallest such set is:

$$\mathscr{D}=\uparrow (\mathscr{A}\cup \{0\})\coloneqq \{g: (\exists f\in \mathscr{A}\cup \{0\}) \ g\geq f\}.$$

Proof $\uparrow (\mathscr{A} \cup \{0\})$ satisfies D1, D3^{**} and $\mathscr{A} \subseteq \uparrow (\mathscr{A} \cup \{0\})$ by construction. Moreover, it satisfies also D4 by Proposition 21, because it is closed respect to the usual topology of \mathbb{R}^n (it is a finite union of closed sets).

Let us indicate with $P(\mathscr{A},\mathscr{R})$, the class of positive additive coherent sets of gambles \mathscr{D} , such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$. Clearly, each $\mathscr{D} \in P(\mathscr{A},\mathscr{R})$ satisfies $\mathscr{D} \supseteq \uparrow (\mathscr{A} \cup \{0\})$. But, every $\mathscr{D} \in P(\mathscr{A},\mathscr{R})$, satisfies also $\mathscr{D} \cap (\mathscr{R} \cup F) = \emptyset$. Therefore, $\uparrow (\mathscr{A} \cup \{0\}) \cap (\mathscr{R} \cup F) = \emptyset$. So, it is also the smallest positive additive coherent set of gambles $\mathscr{D} \in P(\mathscr{A},\mathscr{R})$.

Proof [Proof of Proposition 13] Consider a pair of sets $(\mathscr{A}, \mathscr{R})$ for which there exists a positive additive coherent set of gambles \mathscr{D} , such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R} = \emptyset$. Then the minimal such set is $\uparrow (\mathscr{A} \cup \{0\})$. However, it can be rewritten as:

$$\uparrow (\mathscr{A} \cup \{0\}) = \{g \in \mathscr{L} : PWPC(g) = 1\}$$

where $PWPC(\cdot)$ is a PWP classifier, defined as:

$$PWPC(g) := \begin{cases} 1 & \text{if } \exists f^j \in (\mathscr{A} \cup \{0\}) \text{ s.t. } g \ge f^j, \\ -1 & \text{otherwise.} \end{cases}$$

Therefore, given that $\mathscr{A} \cup T \subseteq \uparrow (\mathscr{A} \cup \{0\}) = \{g : PWPC(g) = 1\}$ and $(\uparrow (\mathscr{A} \cup \{0\}) = \{g : PWPC(g) =$

1}) $\cap (\mathscr{R} \cup F) = \emptyset$, we have that $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ is *PWP* separable. Vice versa, consider a *PWP* separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier *PWPC*(\cdot) \in PWPC($\mathscr{A} \cup T, \mathscr{R} \cup F$). Then:

$$\mathscr{D} := \{g : PWPC(g) = 1\}$$

is, by construction, a positive additive coherent set of gambles. Indeed, it clearly satisfies D1, D2, D3^{**}. Further, it is closed because it is a finite intersection of closed sets (respect to the usual topology of \mathbb{R}^n) hence, by Proposition 21, it satisfies D4. It satisfies also $\mathcal{D} \supseteq \mathcal{A}$ and $\mathcal{D} \cap \mathcal{R} = \emptyset$ by hypothesis.

Proof [Proof of Proposition 15] Consider a *PWP* separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier *PWPC*(\cdot) \in PWPC($\mathscr{A} \cup T, \mathscr{R} \cup F$) with parameters $\mathscr{F} = \{f^j\}_{j=1}^N$.

Then, a classifier $LC_{\rho}(\cdot)$ of the type (14), with parameters $\begin{bmatrix} 1 & 1 \end{bmatrix}$

ters
$$\omega^{j} = f^{j}$$
 and $\beta'_{j} = \begin{bmatrix} 1 \\ \dots \\ 1 \\ -f_{1}^{j} \\ \dots \\ -f_{n}^{j} \end{bmatrix}$, for all $j = 1, \dots, N$, classi-

fies $\mathscr{A} \cup T$ as 1 and $\mathscr{R} \cup F$ as -1.

Indeed, consider $g \in \mathscr{L}$ and let us define $m := \max_k (\min_l (g_l - f_l^k))$. Then:

$$\sum_{j=1}^{N} (\rho_j(g))^T \beta'_j = \sum_{j=1}^{N} \sum_{i=1}^{n} \mathbb{I}_{\zeta_{ij}}(g)(g_i - f_i^j) = KLm$$

where, for every *i*, *j*, ζ_{ij} are the partitions of the type 13 with $\omega^j = f^j$ and where $1 \le L \le n$, $1 \le K \le N$. Hence, *g* is classified in the same way by the classifiers $PWPC(\cdot)$ and $LC_{\rho}(\cdot)$. Therefore, in particular, if $g \in (\mathscr{A} \cup T)$, $m \ge 0$ and hence $LC_{\rho}(g) = 1$. If instead $g \in (\mathscr{R} \cup F)$ then m < 0and hence $LC_{\rho}(g) = -1$.

Vice versa, let us consider a *P*-separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and let us suppose the existence of a classifier $LC_{\rho}(\cdot) \in LC_{P}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\{\beta'_{j}\}_{j=1}^{N}$ such that $\beta'_{j,i} > 0$, and $\omega_{i}^{j} = -\frac{\beta'_{j,i+n}}{\beta'_{j,i}}$ for all i = 1, ..., n, j = 1, ..., N. Let us define $m' \coloneqq \max_{k}(\min_{l}(g_{l} - (-\frac{\beta'_{k,l+n}}{\beta'_{k,l}})))$. Then, for any $g \in \mathscr{L}$:

$$\sum_{j=1}^{N} (\rho_j(g))^T \beta'_j = \sum_{j=1}^{N} \sum_{i=1}^{n} \mathbb{I}_{\zeta_{i,j}}(g) (\beta'_{j,i}g_i + \beta'_{j,i+n}) = \sum_{j=1}^{N} \sum_{i=1}^{n} \beta'_{j,i} \mathbb{I}_{\zeta_{i,j}}(g) (g_i - (-\frac{\beta'_{j,i+n}}{\beta'_{j,i}})), = m' \sum_{j=1}^{K} \sum_{i=1}^{L} \beta'_{j,i}$$

with $1 \le K \le N$, $1 \le L \le n$. Let us consider a PWP classifier $PWPC(\cdot)$ with parameters $\mathscr{F} = \{f^j\}_{j=1}^N$, such that $f_i^j = -\frac{\beta'_{j,i+n}}{\beta'_{j,i}}$, for all *i*, *j*. Then, again, *g* is classified in the

same way by the classifiers $LC_{\rho}(\cdot)$ and $PWPC(\cdot)$. This is in particular true for $g \in \mathscr{A} \cup T$ and $g \in \mathscr{R} \cup F$.