NONLINEAR DESIRABILITY

Appendix A. Proofs of the main results

Proposition 21 Consider a set of gambles 9 C L.

If it is closed under the supremum norm topology, then
it satisfies D4. Vice versa, if 9 satisfies also the following
property:

f>88€e9=fec9 (22)

then D4 implies closure in the supremum norm topology.

Proof It is well-known that .Z is a Banach space under
the supremum norm and it is a linear topological space
(with finite dimension # in our case) under the topology
generated by the supremum norm (see [30]).

Now, consider Z closed under the supremum norm topol-
ogy. Then, the limit of every convergent sequence (f,) {nen}
(respect to the supremum norm) with f, € & for every n,
must be contained in Z. Consider then, a gamble f such
that f+ 6 € & for every 6 > 0, then f+ % € 2 for every
n € N*. Its limit w.r.t. the supremum norm is f and, from
the closure of &, we know that f € 2.

On the other hand, suppose ¥ satisfies D4 and (22). Let
us consider a succession (fy)(,eny € Z convergent W.r.t.
the sumpremum norm to a gamble f € Z. We know that for
every € > 0 there exists N € N such that sup | f,, — f] < € for
all n > N. In particular, this means that there exist h € .
such that:

fo—f=h"—h",sup|lh|<e (23)

hence:
f=f+h")—h" (24)

but, f, +h~ € 2 by hypothesis, and [ = (f,+h~) —h" >
(fu+h)—€.Then f+&> (fu+h") € 2, from which it
follows that f 4 € € 2. This procedure can be repeated for
every € > 0. Then by D4, we have f € 2. |

Proof [Proof of Proposition 3] Consider a pair of
finite sets (&/,%#) for which there exists a coher-
ent set of gambles &, such that ¥ O & and 2N
A% = 0. Then, the minimal coherent set & that satis-
fies these conditions is & (<) = posi(«/ UT), where

posi(J) : { e Aifii fi € A >0,r > 1} for ev-

ery # C Z(Q) and where %" of a set #' C £ rep-
resents the closure of J#” with respect to the supremum
norm topology. In fact, &(.<7) is clearly the minimal set &
that satisfies D1 - D3 such that &2 D «7. Then, thanks to
Proposition 21, &(.¢7) is the minimal coherent set 2’ such
that 2’ D &/ and clearly, by hypothesis, we know also that
& (' )NZ = 0. This fact is also well-known in literature
[30].

However, & (), by definition, is a polyhedral (convex)
cone [1, Definition 2.3.2]. Indeed &(«7) can be rewritten
as:

& () =posi(/ UT) =
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C= {g:gz lefj, fj S (JZfU{Hw,. ?zl),rZ l,lj ZO}
=1

where the last equality derives from the facts that: &(</) =
posi(2Z UT) is generated by the finite set (/' U {Iy, } ;);
C is already closed under the usual topology of R" that
coincides with the closure with respect to the supremum
norm topology, for every topological space with n dimen-
sion [30, Appendix D]. The latter is true because, thanks
to the Minkowsky-Weyl theorem [1], we know that C is an
intersection of a finite number of closed halfspaces whose
bounding hyperspaces pass through the origin:

C={g:¢"B;>0,j=1,...,N} (25)

with B; € R". This concludes this part of the proof since
it tells us that there exists a binary piecewise linear classi-
fier PLC(-) with parameters f3;, which classifies &7 UT C
E(AF)=C={ge ¥ :PLC(g)=1}as 1 and (ZUF),
that has empty intersection with C, as —1.

Vice versa, consider a piecewise linearly separable pair
(A UT,ZUF) and a classifier PLC(-) € PLC(&/ UT, % U
F). Then:

{g:PLC(g) =1} ={g:g"B; >0, forall j=1,..,N}
(26)
for some f3; € R” such that 8; >0, Y;Bji =1, forall i, j
(constraints on f; easily follow from the fact that PLC(-)
classifies T as 1). Hence there exists a linear prevision P;,
such that Pj(g) = g’ B;, for all g, for all j = 1,...,N [30,
Section 2.8,Section 3.2]. Therefore we have:

{g:PLC(g) =1} =
{g:Pj(g) > 0,forallj=1,..,N} = {g: P(g) > 0},

where P := min;{P;} is a coherent lower prevision [30,
Theorem 3.3.3]. Hence, ¥ := {g: PLC(g) = 1} is a coher-
ent set of gambles [30, Theorem 3.8.1].
In particular, we have also that & C {g: PLC(g) =1} =
Z and ZN ({g: PLC(g) = 1} = 2) = 0 by hypotheses.
|

Proof [Proof of Proposition 5] Consider a piecewise
linearly separable pair (& UT,%Z UF) and a classifier
PLC(-) € PLC(&/ UT, % UF) with parameters {B;}_,.

Then, a classifier LCy (-) of the type (5) with parameters
w;j = Pjand Bj = B for all j=1,...,N, classifies &/ UT
as 1 and ZUF as —1. Indeed, consider g € .Z and let us
define m := min(g” Bi,...,g" By). Then:

(6(2))" B;

J J=1

=

K
(Iz,(8)e) Bi =Y & B =Km,
k=1

M=

where, for every j, %; are the partitions of the type 4 with
®;=B;and g B =m, forallk=1,....,K, with 1 <K <N.
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Hence, g is classified in the same way by the classifiers
PLC(-) and LCy (-). Therefore, in particular, if g € (&7 UT),
m > 0 and hence Z?’Zl (9;(g))TB;=Km>0,if instead g €
(ZUF) then m < 0 and hence Z’}’:] (9,(8))"Bj =Km<0.

Vice versa, let us consider a ®-separable pair (o U
T,2% UF) and let us suppose the existence of a classifier
LCy(-) € LCo(«/ UT,Z UF) with parameters @; = f3/,
forall j=1,...,N. Letus define m’ :== min(g” B, ..., g" BY).
Then, for any g € . we have:

K
(9,(e)"Bj=Y "B =Kn', 27)
k=1

™=

where again g' B; =m/, forallk=1,...K, with 1 <K <N.
Let us consider a binary piecewise linear classifier PLC(+)
with parameters { /31’}711 Then, again, g is classified in the
same way by the classifiers LCy () and PLC(-). This is in
particular true for g € &/ UT and g € Z UF. This means
also that B/ > 0, forall j = 1,..,N.

|

Lemma 22 Ifaset 9 C &, satisfies D1, D3* and D4 then
it satisfies (22).

Proof Consider f > g with g € 2. Then f = g+t with
te€T.Forany € >0, f+€&=g+1t+ & Moreover, we can
always find A € (0,1) such that Ag < g+ €.

Therefore, we have f+¢&=Ag+ (1— l)(“sl%ﬁg)“.
Now, g € Z by hypothesis and % eT,sof+ee

2. This can be repeated for every € > 0, then f+e€ P
for all € > 0 that implies, by D4, that f € 2. |

Lemma 23 Given a pair of finite sets (<7 , %) for which
there exists a convex coherent set of gambles 9 such that
D DO o and DNX = 0, then the minimal such set is 9 =
ch(«ZUT).

Proof ch(</ UT) satisfies D1 by definition and D3* [24,
Theorem 6.2] and D4, thanks to Proposition 21.

Let us indicate with D(.«7, %), the class of convex coher-
ent sets of gambles Z such that 2 O &/ and N % = 0.
Thanks to Lemma 22 and Proposition 21, every 2 €
D(, %), is a convex closed set (respect to the topology of
R” or equivalently respect to the supremum norm topology)
that contains (&7 UT).

Given the fact that ch(«/ UT) D &/ UT and, by defini-
tion, it is the intersection of all the closed (respect to the
topology of R" or equivalently respect to the supremum
norm topology) and convex sets containing (&7 UT), we
have that ch(&/ UT) C 9, forall ¥ € D(«&/, %).

But, every 7 € D(&/, %), satisfies ZN(ZUF) = 0.
Therefore, ch(«Z UT) N (Z UF) = 0, and hence it is also
the smallest set 2 € D(«/,%). This concludes the proof.
]
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Lemma 24 Consider a finite set o/ C £. Then:

ch(«/ UT)=ch™ («/U{0}):={g:g>f, f €ch(/U{0}).
Proof First of all, we can observe that:

cht(ZU{0})={g:g>f, f€ch(zZU{0}) =

= Za,-gi + Z yjej =: ch(«/ U{0}) +posi(ey,...,e,)
icl jel

with 7, J finite, g; € &/ U{0}, 0,7 > 0and }; o; = 1, where
e; is the canonical basis in R” and posi(ey,...,e,) is a con-
vex polyhedral cone. From [27, Corollary 7.1.b], it follows
that ch™ (o7 U {0}) is a convex (closed) polyhedron. Hence
cht (& U{0}) = ch* (&7 U{0}). Now, we divide the proof
in two parts.
 ch(«/UT) C ch™ (o7 U{0}). Notice that, thanks to
the previous observation, it is sufficient to show that
ch(«/ UT) C cht (& U{0}). So, let us consider g €
ch(«/ UT). By definition, we have:

.
g=Y Mg
k=1

with A > 0, for all k= 1,.,r, r > 1, Y A =
1, gr € (& UT). Let us indicate with Indy\r := {k €
{1,...,r} suchthat: g € &/ \ T} and Indr := {k €
{1,...,r} such that: g € T'}. Then we have:

g> Z lkgk"‘r Z AkO,
kelndyr kelndy
hence g € ch™ (7 U{0}).

e ch(&7 U {0}) C ch(«/UT). By definition,
ch(«/UT) is a closed convex set that contains
T. Therefore, from Proposition 21 and Lemma 22, we
have:

ch(/ U{0}) C eh(e/ UT) =
ch™ (&7 U{0}) Cch(/ UT).

Proof [Proof of Proposition 8] Consider a pair of sets
(o7, %) for which there exists a convex coherent set of
gambles 2, such that 2 O o/ and 2 NZ = 0. Then the
minimal convex coherent set &, which satisfies these con-
ditions, is ch(/ UT). Thanks to Lemma 24, we know that
it can be rewritten as:

ch(«/ UT) =ch™ (o7 U{0}), (28)
where ch™ (7 U{0}) is a convex polyhedron. Any con-
vex polyhedron can be written as an intersection of hyper-
spaces, whose border is a piecewise affine function. There-
fore, there exists a piecewise affine classifier PAC(-), such
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thatch(«/ UT) =ch" (&7 U{0}) = {g: PAC(g) = 1}. Note

moreover that ch(&/ UT) ={g: PAC(g) =1} D (& UT)
and (ch(«/UT) ={g: PAC(g) = 1})N(ZUF) =0 by
construction.

Vice versa, consider a piecewise affine separable pair
(o UT,ZUF). Let us consider a piecewise affine classifier
PAC(-) € PAC(«/ UT,Z UF). Now, the set:

2 :={g:PAC(g) =1} =

{g:¢"Bj+0a;>0, forall j=1,...N}

for some B; € R" with B; > 0 and a; € R for all j €
{1,...N}, is a convex coherent set of gambles such that
2D o and Z2NZ = 0. Indeed:
e T C Zand ZNF =0, by definition, hence it satisfies
D1 and D2;
» 7 satisfies D3*. Consider g1,g2 € Z. Thentg; + (1 —
1)g2 € 2, forall 1 € [0,1]. Indeed,

(tg1+(1—1)g2)" Bj+o; =
(1—-1)g2)" Bj+taj+ (1 —t)a; =
1) (g3 Bj+aj) >0

(rg1)" Bj +
t((81)" B+ )+ (1 -

forall j € {l,...,N}.

* 9 is closed in the usual topology of R" because it
is the intersection of a finite number of closed half-
spaces hence, thanks to Proposition 21, it satisfies D4.

Clearly, by the fact that PAC(-) € PAC(&/ UT,ZUF), itis
also true that & C P and I NZ%Z = 0. [ |

Proof [Proof of Proposition 10]
Consider a piecewise affine separable pair (& UT, % U
F) and a classifier PAC(-) € PAC(&/ UT,Z UF) with pa-
rameters {ﬁ],aJ}J {-
Then, a classifier LCy(-) of the type (11) with parameters

o [ﬁ
a;

and ZUF as —1. Indeed, consider g € .Z and let us define

m:=min(g’ By +au,...,g" By + o). Then:

Swior[2]-£, (e (D 2)-

=Km

forall j=1,...,N, classifies &/ UT as 1

N

)»

j=1

g "B+ o)

)

\\Ma

where, for every j, %' ; are the partitions of the type 10
with a)} = B; and g7 B + o = m, for any k = 1,...,K
with 1 < K < N. Hence, g is classified in the same way by
the classifiers PAC(-) and LCy(-). Therefore, in particular,
if g€ (/UT), m >0 and hence Y, (w;(g))" [gf] =
J
Km > 0, if instead g € (ZUF) then m < 0 and hence

Y (@) ﬁﬂ <o.
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Vice versa, let us consider a ¥-separable pair (o7 U
T,% UF) and let us suppose the existence of a classiﬁer
LCy (') € LCy(«/ UT,Z UF) with parameters ; = f3;,
for all j =1,.

Bl’7n+1,...,gTB1'\,’l:” + By ns1)- Then, for any g € Z, we
have:

,N. Let us define m' := min(g” ﬁl,l:n

Km'

)

K
Z (gTﬁli,l:n +Bl£,n+l) =

k=1

1=

(v(8)"Bj =

J=

where f3/ |, is the vector containing the first n components
of By, for every k, and where again (g" B/ + B/, ,) =m

forall k =1,...K, with 1 < K < N. Let us consider a
binary piecewise affine classifier PAC(-) with parameters
{B] 1.0>B] ns1 Y}, Then, again, g is classified in the same
way by the classifiers LCy(-) and PAC(-). This is in partic-
ular true for g € &/ UT and g € Z U F. This means also
that B/, >0, for all j=1,..,N and S/ > 0, for all

Sl = jn+1
j=1,..,N,withatleasta f; , , =0. m

Lemma 25 Given a pair of finite sets (<7, %) for which
there exists a positive additive coherent set of gambles 9,
such that 9 O of and 9 NX = 0, then the smallest such
set is:

2 =t (FU{0})={g: (3f e FU{0}) g> [}
Proof 1 (&7 U{0}) satisfies D1, D3** and &/ C1 (/' U
{0}) by construction. Moreover, it satisfies also D4 by
Proposition 21, because it is closed respect to the usual
topology of R” (it is a finite union of closed sets).

Let us indicate with P(«/, %), the class of positive
additive coherent sets of gambles &, such that ¥ O o/
and 2N % = 0. Clearly, each ¥ € P(«/, %) satisfies
2 21 (o7 U{0}). But, every 7 € P(«7, %), satisfies also
PN (ZUF) =0. Therefore, T (& U{0})N(ZUF)=0.
So, it is also the smallest positive additive coherent set of
gambles 7 € P(o/,Z). [ |

Proof [Proof of Proposition 13] Consider a pair of sets
(o7, Z) for which there exists a positive additive coherent
set of gambles 2, such that Z O &/ and 2 N% = 0. Then
the minimal such set is 1 (7 U {0}). However, it can be
rewritten as:

T (FU{0})={geZ :PWPC(g) =1}

where PWPC(-) is a PWP classifier, defined as:

1 if3fie
-1

(7 U{0}) s.t. g > f7,
otherwise.

PWPC(g) = {

Therefore, given that &/ UT Ct (& U{0}) = {g:
PWPC(g) = 1} and (1 («/ U{0}) = {g: PWPC(g) =
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1N (ZUF) =0, we have that (& UT,ZUF) is PWP
separable. Vice versa, consider a PWP separable pair
(A UT,ZUF) and a classifier PWPC(-) € PWPC(«/ U
T,%JF). Then:

2 ={g:PWPC(g)=1}

is, by construction, a positive additive coherent set of gam-
bles. Indeed, it clearly satisfies D1, D2, D3**. Further, it
is closed because it is a finite intersection of closed sets
(respect to the usual topology of R") hence, by Proposition
21, it satisfies D4. It satisfies also Z D o and INZ =0
by hypothesis. |

Proof [Proof of Proposition 15] Consider a PWP sepa-
rable pair (& UT,% UF) and a classifier PWPC(-) €
PWPC(&/ UT, % UF) with parameters .7 = {f/})_,
Then, a classifier LC,(+) of the type (14), with parame-
1

ters @/ = f/ and B} = forall j=1,...,N, classi-

1
_flJ ’
—fi
fies 7 UT as 1 and ZUF as —1.

Indeed,consider ¢ € £ and let us define m =
maxy (min; (g, — £¥)). Then:

N
Z Z Z]IQ/ 11y =KLm

j=1 j=li=

where, for every i, j, {;; are the partitions of the type 13
with @/ = f/ and where 1 <L <n, 1 <K <N. Hence, g
is classified in the same way by the classifiers PWPC(-)
and LC) (-). Therefore, in particular, if g € (&7 UT),m >0
and hence LCy(g) = 1. If instead g € (ZUF) then m < 0
and hence LC) (g) = —1.

Vice versa, let us consider a P-separable pair (<7 U
T,% JF) and let us suppose the existence of a classi-
fier LCp () € LCp(o/ UT, ,%’UF), with parameters {ﬁj/}ljvzl
such thatﬁ/ >0, and ® = %forallizl,..m,jz

i

1,...,N. Let us define m' := max;(min;(g; — (—B;;Z")))

Then, for any g € .Z:

N
%08 = 3 10, 61850 =

j=li=

N n I K
Zzﬁjt@/ ’_(_ b}t" ’ = ;

j=li=

HMF

with 1 <K <N, 1<L<n.Letus consider a PWP clas-
sifier PWPC(-) with parameters 7 = {f/}_,, such that

: '
fl=- k‘ﬁ"‘, for all i, j. Then, again, g is classified in the
Jsl

same way by the classifiers LC, (-) and PWPC(-). This is

in particular true for g € /' UT and g € ZUF.
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