Appendix A. Proofs of the main results

Proposition 21 Consider a set of gambles $\mathscr{D} \subseteq \mathscr{L}$.
If it is closed under the supremum norm topology, then it satisfies D4. Vice versa, if \mathscr{D} satisfies also the following property:

$$
\begin{equation*}
f \geq g, g \in \mathscr{D} \Rightarrow f \in \mathscr{D} \tag{22}
\end{equation*}
$$

then D4 implies closure in the supremum norm topology.
Proof It is well-known that \mathscr{L} is a Banach space under the supremum norm and it is a linear topological space (with finite dimension n in our case) under the topology generated by the supremum norm (see [30]).

Now, consider \mathscr{D} closed under the supremum norm topology. Then, the limit of every convergent sequence $\left(f_{n}\right)_{\{n \in \mathbb{N}\}}$ (respect to the supremum norm) with $f_{n} \in \mathscr{D}$ for every n, must be contained in \mathscr{D}. Consider then, a gamble f such that $f+\delta \in \mathscr{D}$ for every $\delta>0$, then $f+\frac{1}{n} \in \mathscr{D}$ for every $n \in \mathbb{N}^{*}$. Its limit w.r.t. the supremum norm is f and, from the closure of \mathscr{D}, we know that $f \in \mathscr{D}$.

On the other hand, suppose \mathscr{D} satisfies D4 and (22). Let us consider a succession $\left(f_{n}\right)_{\{n \in \mathbb{N}\}} \in \mathscr{D}$ convergent w.r.t. the sumpremum norm to a gamble $f \in \mathscr{L}$. We know that for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\sup \left|f_{n}-f\right|<\varepsilon$ for all $n \geq N$. In particular, this means that there exist $h \in \mathscr{L}$ such that:

$$
\begin{equation*}
f_{n}-f=h^{+}-h^{-}, \sup |h|<\varepsilon \tag{23}
\end{equation*}
$$

hence:

$$
\begin{equation*}
f=\left(f_{n}+h^{-}\right)-h^{+} \tag{24}
\end{equation*}
$$

but, $f_{n}+h^{-} \in \mathscr{D}$ by hypothesis, and $f=\left(f_{n}+h^{-}\right)-h^{+} \geq$ $\left(f_{n}+h^{-}\right)-\varepsilon$. Then $f+\varepsilon \geq\left(f_{n}+h^{-}\right) \in \mathscr{D}$, from which it follows that $f+\varepsilon \in \mathscr{D}$. This procedure can be repeated for every $\varepsilon>0$. Then by D4, we have $f \in \mathscr{D}$.

Proof [Proof of Proposition 3] Consider a pair of finite sets $(\mathscr{A}, \mathscr{R})$ for which there exists a coherent set of gambles \mathscr{D}, such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap$ $\mathscr{R}=\emptyset$. Then, the minimal coherent set \mathscr{D} that satisfies these conditions is $\overline{\mathscr{E}(\mathscr{A})}:=\overline{\operatorname{posi}(\mathscr{A} \cup T)}$, where $\operatorname{posi}(\mathscr{K}):=\left\{\sum_{j=1}^{r} \lambda_{j} f_{j}: f_{j} \in \mathscr{K}, \lambda_{j}>0, r \geq 1\right\}$ for every $\mathscr{K} \subseteq \mathscr{L}(\Omega)$ and where $\overline{\mathscr{K}^{\prime}}$ of a set $\mathscr{K}^{\prime} \subseteq \mathscr{L}$ represents the closure of \mathscr{K}^{\prime} with respect to the supremum norm topology. In fact, $\mathscr{E}(\mathscr{A})$ is clearly the minimal set \mathscr{D} that satisfies D1-D3 such that $\mathscr{D} \supseteq \mathscr{A}$. Then, thanks to Proposition 21, $\overline{\mathscr{E}(\mathscr{A})}$ is the minimal coherent set \mathscr{D}^{\prime} such that $\mathscr{D}^{\prime} \supseteq \mathscr{A}$ and clearly, by hypothesis, we know also that $\overline{\mathscr{E}(\mathscr{A})} \cap \mathscr{R}=\emptyset$. This fact is also well-known in literature [30].

However, $\overline{\mathscr{E}(\mathscr{A})}$, by definition, is a polyhedral (convex) cone [1, Definition 2.3.2]. Indeed $\overline{\mathscr{E}(\mathscr{A})}$ can be rewritten as:

$$
\overline{\mathscr{E}(\mathscr{A})}=\overline{\operatorname{posi}(\mathscr{A} \cup T)}=
$$

$$
C:=\left\{g: g=\sum_{j=1}^{r} \lambda_{j} f_{j}, f_{j} \in\left(\mathscr{A} \cup\left\{\mathbb{I}_{\omega_{i}}\right\}_{i=1}^{n}\right), r \geq 1, \lambda_{j} \geq 0\right\}
$$

where the last equality derives from the facts that: $\mathscr{E}(\mathscr{A})=$ $\operatorname{posi}(\mathscr{A} \cup T)$ is generated by the finite set $\left(\mathscr{A} \cup\left\{\mathbb{I}_{\omega_{i}}\right\}_{i=1}^{n}\right)$; C is already closed under the usual topology of \mathbb{R}^{n} that coincides with the closure with respect to the supremum norm topology, for every topological space with n dimension [30, Appendix D]. The latter is true because, thanks to the Minkowsky-Weyl theorem [1], we know that C is an intersection of a finite number of closed halfspaces whose bounding hyperspaces pass through the origin:

$$
\begin{equation*}
C=\left\{g: g^{T} \beta_{j} \geq 0, j=1, \ldots, N\right\} \tag{25}
\end{equation*}
$$

with $\beta_{j} \in \mathbb{R}^{n}$. This concludes this part of the proof since it tells us that there exists a binary piecewise linear classifier $P L C(\cdot)$ with parameters β_{j}, which classifies $\mathscr{A} \cup T \subseteq$ $\overline{\mathscr{E}(\mathscr{A})}=C=:\{g \in \mathscr{L}: P L C(g)=1\}$ as 1 and $(\mathscr{R} \cup F)$, that has empty intersection with C, as -1 .

Vice versa, consider a piecewise linearly separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $P L C(\cdot) \in \operatorname{PLC}(\mathscr{A} \cup T, \mathscr{R} \cup$ $F)$. Then:

$$
\begin{equation*}
\{g: P L C(g)=1\}=\left\{g: g^{T} \beta_{j} \geq 0, \text { for all } j=1, . ., N\right\} \tag{26}
\end{equation*}
$$

for some $\beta_{j} \in \mathbb{R}^{n}$ such that $\beta_{j i} \geq 0, \sum_{i} \beta_{j i}=1$, for all i, j (constraints on β_{j} easily follow from the fact that $\operatorname{PLC}(\cdot)$ classifies T as 1). Hence there exists a linear prevision P_{j}, such that $P_{j}(g)=g^{T} \beta_{j}$, for all g, for all $j=1, \ldots, N[30$, Section 2.8,Section 3.2]. Therefore we have:

$$
\begin{aligned}
\{g: P L C(g)=1\} & = \\
\left\{g: P_{j}(g) \geq 0, \text { for all } j=1, . ., N\right\} & =\{g: \underline{P}(g) \geq 0\}
\end{aligned}
$$

where $\underline{P}:=\min _{j}\left\{P_{j}\right\}$ is a coherent lower prevision [30, Theorem 3.3.3]. Hence, $\mathscr{D}:=\{g: P L C(g)=1\}$ is a coherent set of gambles [30, Theorem 3.8.1].

In particular, we have also that $\mathscr{A} \subseteq\{g: P L C(g)=1\}=$ \mathscr{D} and $\mathscr{R} \cap(\{g: P L C(g)=1\}=\mathscr{D})=\emptyset$ by hypotheses.

Proof [Proof of Proposition 5] Consider a piecewise linearly separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $P L C(\cdot) \in \operatorname{PLC}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\left\{\beta_{j}\right\}_{j=1}^{N}$.

Then, a classifier $L C_{\phi}(\cdot)$ of the type (5) with parameters $\omega_{j}=\beta_{j}$ and $\beta_{j}^{\prime}=\beta_{j}$ for all $j=1, \ldots, N$, classifies $\mathscr{A} \cup T$ as 1 and $\mathscr{R} \cup F$ as -1 . Indeed, consider $g \in \mathscr{L}$ and let us define $m:=\min \left(g^{T} \beta_{1}, \ldots, g^{T} \beta_{N}\right)$. Then:

$$
\sum_{j=1}^{N}\left(\phi_{j}(g)\right)^{T} \beta_{j}=\sum_{j=1}^{N}\left(\mathbb{I}_{\mathscr{B}_{j}}(g) g\right)^{T} \beta_{j}=\sum_{k=1}^{K} g^{T} \beta_{k}=K m
$$

where, for every j, \mathscr{B}_{j} are the partitions of the type 4 with $\omega_{j}=\beta_{j}$ and $g^{T} \beta_{k}=m$, for all $k=1, \ldots, K$, with $1 \leq K \leq N$.

Hence, g is classified in the same way by the classifiers $P L C(\cdot)$ and $L C_{\phi}(\cdot)$. Therefore, in particular, if $g \in(\mathscr{A} \cup T)$, $m \geq 0$ and hence $\sum_{j=1}^{N}\left(\phi_{j}(g)\right)^{T} \beta_{j}=K m \geq 0$, if instead $g \in$ $(\mathscr{R} \cup F)$ then $m<0$ and hence $\sum_{j=1}^{N}\left(\phi_{j}(g)\right)^{T} \beta_{j}=K m<0$.

Vice versa, let us consider a Φ-separable pair $(\mathscr{A} \cup$ $T, \mathscr{R} \cup F)$ and let us suppose the existence of a classifier $L C_{\phi}(\cdot) \in \mathrm{LC}_{\Phi}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\omega_{j}=\beta_{j}^{\prime}$, for all $j=1, \ldots, N$. Let us define $m^{\prime}:=\min \left(g^{T} \beta_{1}^{\prime}, \ldots, g^{T} \beta_{N}^{\prime}\right)$. Then, for any $g \in \mathscr{L}$ we have:

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\phi_{j}(g)\right)^{T} \beta_{j}^{\prime}=\sum_{k=1}^{K} g^{T} \beta_{k}^{\prime}=K m^{\prime} \tag{27}
\end{equation*}
$$

where again $g^{T} \beta_{k}^{\prime}=m^{\prime}$, for all $k=1, \ldots K$, with $1 \leq K \leq N$. Let us consider a binary piecewise linear classifier $\operatorname{PLC}(\cdot)$ with parameters $\left\{\beta_{j}^{\prime}\right\}_{j=1}^{N}$. Then, again, g is classified in the same way by the classifiers $L C_{\phi}(\cdot)$ and $P L C(\cdot)$. This is in particular true for $g \in \mathscr{A} \cup T$ and $g \in \mathscr{R} \cup F$. This means also that $\beta_{j}^{\prime} \geqslant 0$, for all $j=1, . ., N$.

Lemma 22 If a set $\mathscr{D} \subseteq \mathscr{L}$, satisfies $D 1, D 3^{*}$ and $D 4$ then it satisfies (22).

Proof Consider $f \geq g$ with $g \in \mathscr{D}$. Then $f=g+t$ with $t \in T$. For any $\varepsilon>0, f+\varepsilon=g+t+\varepsilon$. Moreover, we can always find $\lambda \in(0,1)$ such that $\lambda g \leq g+\varepsilon$.

Therefore, we have $f+\varepsilon=\lambda g+(1-\lambda) \frac{(g+\varepsilon-\lambda g)+t}{1-\lambda}$. Now, $g \in \mathscr{D}$ by hypothesis and $\frac{(g+\varepsilon-\lambda g)+t}{1-\lambda} \in T$, so $f+\varepsilon \in$ \mathscr{D}. This can be repeated for every $\varepsilon>0$, then $f+\varepsilon \in \mathscr{D}$ for all $\varepsilon>0$ that implies, by D4, that $f \in \mathscr{D}$.

Lemma 23 Given a pair of finite sets $(\mathscr{A}, \mathscr{R})$ for which there exists a convex coherent set of gambles \mathscr{D} such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$, then the minimal such set is $\mathscr{D}=$ $\operatorname{ch}(\mathscr{A} \cup T)$.

Proof $\overline{\operatorname{ch}(\mathscr{A} \cup T)}$ satisfies D1 by definition and D3*[24, Theorem 6.2] and D4, thanks to Proposition 21.

Let us indicate with $\mathrm{D}(\mathscr{A}, \mathscr{R})$, the class of convex coherent sets of gambles \mathscr{D} such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$. Thanks to Lemma 22 and Proposition 21, every $\mathscr{D} \in$ $\mathrm{D}(\mathscr{A}, \mathscr{R})$, is a convex closed set (respect to the topology of \mathbb{R}^{n} or equivalently respect to the supremum norm topology) that contains $(\mathscr{A} \cup T)$.

Given the fact that $\overline{\operatorname{ch}(\mathscr{A} \cup T)} \supseteq \mathscr{A} \cup T$ and, by definition, it is the intersection of all the closed (respect to the topology of \mathbb{R}^{n} or equivalently respect to the supremum norm topology) and convex sets containing $(\mathscr{A} \cup T)$, we have that $\overline{\operatorname{ch}(\mathscr{A} \cup T)} \subseteq \mathscr{D}$, for all $\mathscr{D} \in \mathrm{D}(\mathscr{A}, \mathscr{R})$.

But, every $\mathscr{D} \in \mathrm{D}(\mathscr{A}, \mathscr{R})$, satisfies $\mathscr{D} \cap(\mathscr{R} \cup F)=\emptyset$.
 the smallest set $\mathscr{D} \in \mathrm{D}(\mathscr{A}, \mathscr{R})$. This concludes the proof.

Lemma 24 Consider a finite set $\mathscr{A} \subseteq \mathscr{L}$. Then:
$\overline{\operatorname{ch}(\mathscr{A} \cup T)}=\operatorname{ch}^{+}(\mathscr{A} \cup\{0\}):=\{g: g \geq f, f \in \operatorname{ch}(\mathscr{A} \cup\{0\})$.
Proof First of all, we can observe that:

$$
\begin{aligned}
\operatorname{ch}^{+}(\mathscr{A} \cup\{0\}) & =\{g: g \geq f, f \in \operatorname{ch}(\mathscr{A} \cup\{0\})= \\
=\sum_{i \in I} \alpha_{i} g_{i}+\sum_{j \in J} \gamma_{j} e_{j} & =: \operatorname{ch}(\mathscr{A} \cup\{0\})+\operatorname{posi}\left(e_{1}, \ldots, e_{n}\right)
\end{aligned}
$$

with I, J finite, $g_{i} \in \mathscr{A} \cup\{0\}, \alpha_{i}, \gamma_{i} \geq 0$ and $\sum_{i} \alpha_{i}=1$, where e_{i} is the canonical basis in \mathbb{R}^{n} and $\operatorname{posi}\left(e_{1}, \ldots, e_{n}\right)$ is a convex polyhedral cone. From [27, Corollary 7.1.b], it follows that $\operatorname{ch}^{+}(\mathscr{A} \cup\{0\})$ is a convex (closed) polyhedron. Hence $\overline{\operatorname{ch}^{+}(\mathscr{A} \cup\{0\})}=\operatorname{ch}^{+}(\mathscr{A} \cup\{0\})$. Now, we divide the proof in two parts.

- $\overline{\operatorname{ch}(\mathscr{A} \cup T)} \subseteq \operatorname{ch}^{+}(\mathscr{A} \cup\{0\})$. Notice that, thanks to the previous observation, it is sufficient to show that $\operatorname{ch}(\mathscr{A} \cup T) \subseteq \operatorname{ch}^{+}(\mathscr{A} \cup\{0\})$. So, let us consider $g \in$ $\operatorname{ch}(\mathscr{A} \cup T)$. By definition, we have:

$$
g=\sum_{k=1}^{r} \lambda_{k} g_{k}
$$

with $\lambda_{k} \geq 0$, for all $k=1, \ldots, r, r \geq 1, \sum_{k=1}^{r} \lambda_{k}=$ $1, g_{k} \in(\mathscr{A} \cup T)$. Let us indicate with $\operatorname{Ind}_{A \backslash T}:=\{k \in$ $\{1, \ldots, r\}$ such that $\left.: g_{k} \in \mathscr{A} \backslash T\right\}$ and Ind $_{T}:=\{k \in$ $\{1, \ldots, r\}$ such that : $\left.g_{k} \in T\right\}$. Then we have:

$$
g \geq \sum_{k \in \operatorname{Ind} d_{A \backslash T}} \lambda_{k} g_{k}+\sum_{k \in \operatorname{Ind} d_{T}} \lambda_{k} 0,
$$

hence $g \in \operatorname{ch}^{+}(\mathscr{A} \cup\{0\})$.

- $\operatorname{ch}^{+}(\mathscr{A} \cup\{0\}) \subseteq \overline{\operatorname{ch}(\mathscr{A} \cup T)}$. By definition, $\overline{\operatorname{ch}(\mathscr{A} \cup T)}$ is a closed convex set that contains T. Therefore, from Proposition 21 and Lemma 22, we have:

$$
\begin{aligned}
\operatorname{ch}(\mathscr{A} \cup\{0\}) & \subseteq \overline{\operatorname{ch}(\mathscr{A} \cup T)} \Rightarrow \\
\operatorname{ch}^{+}(\mathscr{A} \cup\{0\}) & \subseteq \overline{\operatorname{ch}(\mathscr{A} \cup T)}
\end{aligned}
$$

Proof [Proof of Proposition 8] Consider a pair of sets $(\mathscr{A}, \mathscr{R})$ for which there exists a convex coherent set of gambles \mathscr{D}, such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$. Then the minimal convex coherent set \mathscr{D}, which satisfies these conditions, is $\overline{\operatorname{ch}(\mathscr{A} \cup T)}$. Thanks to Lemma 24, we know that it can be rewritten as:

$$
\begin{equation*}
\overline{\operatorname{ch}(\mathscr{A} \cup T)}=\operatorname{ch}^{+}(\mathscr{A} \cup\{0\}), \tag{28}
\end{equation*}
$$

where $\mathrm{ch}^{+}(\mathscr{A} \cup\{0\})$ is a convex polyhedron. Any convex polyhedron can be written as an intersection of hyperspaces, whose border is a piecewise affine function. Therefore, there exists a piecewise affine classifier $P A C(\cdot)$, such
that $\overline{\operatorname{ch}(\mathscr{A} \cup T)}=\operatorname{ch}^{+}(\mathscr{A} \cup\{0\})=\{g: P A C(g)=1\}$. Note moreover that $\overline{\operatorname{ch}(\mathscr{A} \cup T)}=\{g: P A C(g)=1\} \supseteq(\mathscr{A} \cup T)$ and $(\overline{\operatorname{ch}(\mathscr{A} \cup T)}=\{g: P A C(g)=1\}) \cap(\mathscr{R} \cup F)=\emptyset$ by construction.

Vice versa, consider a piecewise affine separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$. Let us consider a piecewise affine classifier $P A C(\cdot) \in \operatorname{PAC}(\mathscr{A} \cup T, \mathscr{R} \cup F)$. Now, the set:

$$
\begin{aligned}
\mathscr{D}:= & \{g: P A C(g)=1\}= \\
& \left\{g: g^{T} \beta_{j}+\alpha_{j} \geq 0, \text { for all } j=1, \ldots, N\right\}
\end{aligned}
$$

for some $\beta_{j} \in \mathbb{R}^{n}$ with $\beta_{j} \geqslant 0$ and $\alpha_{j} \in \mathbb{R}$ for all $j \in$ $\{1, \ldots N\}$, is a convex coherent set of gambles such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$. Indeed:

- $T \subseteq \mathscr{D}$ and $\mathscr{D} \cap F=\emptyset$, by definition, hence it satisfies D1 and D2;
- \mathscr{D} satisfies D3* ${ }^{*}$. Consider $g_{1}, g_{2} \in \mathscr{D}$. Then $t g_{1}+(1-$ $t) g_{2} \in \mathscr{D}$, for all $t \in[0,1]$. Indeed,

$$
\begin{aligned}
\left(t g_{1}+(1-t) g_{2}\right)^{T} \beta_{j}+\alpha_{j} & = \\
\left(t g_{1}\right)^{T} \beta_{j}+\left((1-t) g_{2}\right)^{T} \beta_{j}+t \alpha_{j}+(1-t) \alpha_{j} & = \\
t\left(\left(g_{1}\right)^{T} \beta_{j}+\alpha_{j}\right)+(1-t)\left(g_{2}^{T} \beta_{j}+\alpha_{j}\right) & \geq 0
\end{aligned}
$$

for all $j \in\{1, \ldots, N\}$.

- \mathscr{D} is closed in the usual topology of \mathbb{R}^{n} because it is the intersection of a finite number of closed halfspaces hence, thanks to Proposition 21, it satisfies D4. Clearly, by the fact that $P A C(\cdot) \in \operatorname{PAC}(\mathscr{A} \cup T, \mathscr{R} \cup F)$, it is also true that $\mathscr{A} \subseteq \mathscr{D}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$.

Proof [Proof of Proposition 10]

Consider a piecewise affine separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup$ $F)$ and a classifier $P A C(\cdot) \in \operatorname{PAC}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\left\{\beta_{j}, \alpha_{j}\right\}_{j=1}^{N}$.

Then, a classifier $L C_{\psi}(\cdot)$ of the type (11) with parameters $\omega_{j}^{\prime}=\beta_{j}^{\prime}=\left[\begin{array}{c}\beta_{j} \\ \alpha_{j}\end{array}\right]$, for all $j=1, \ldots, N$, classifies $\mathscr{A} \cup T$ as 1 and $\mathscr{R} \cup F$ as -1 . Indeed, consider $g \in \mathscr{L}$ and let us define $m:=\min \left(g^{T} \beta_{1}+\alpha_{1}, \ldots, g^{T} \beta_{N}+\alpha_{N}\right)$. Then:

$$
\begin{gathered}
\sum_{j=1}^{N}\left(\psi_{j}(g)\right)^{T}\left[\begin{array}{c}
\beta_{j} \\
\alpha_{j}
\end{array}\right]=\sum_{j=1}^{N}\left(\mathbb{I}_{\mathscr{B}^{\prime}}{ }^{\prime}\left(\left[\begin{array}{l}
g \\
1
\end{array}\right]\right)\left[\begin{array}{l}
g \\
1
\end{array}\right]\right)^{T}\left[\begin{array}{c}
\beta_{j} \\
\alpha_{j}
\end{array}\right]= \\
\sum_{k=1}^{K}\left(g^{T} \beta_{k}+\alpha_{k}\right)=K m
\end{gathered}
$$

where, for every $j, \mathscr{B}^{\prime}{ }_{j}$ are the partitions of the type 10 with $\omega_{j}^{\prime}=\beta_{j}$ and $g^{T} \beta_{k}+\alpha_{k}=m$, for any $k=1, \ldots, K$, with $1 \leq K \leq N$. Hence, g is classified in the same way by the classifiers $P A C(\cdot)$ and $L C_{\psi}(\cdot)$. Therefore, in particular, if $g \in(\mathscr{A} \cup T), m \geq 0$ and hence $\sum_{j=1}^{N}\left(\psi_{j}(g)\right)^{T}\left[\begin{array}{l}\beta_{j} \\ \alpha_{j}\end{array}\right]=$ $K m \geq 0$, if instead $g \in(\mathscr{R} \cup F)$ then $m<0$ and hence $\sum_{j=1}^{N}\left(\psi_{j}(g)\right)^{T}\left[\begin{array}{c}\beta_{j} \\ \alpha_{j}\end{array}\right]<0$.

Vice versa, let us consider a Ψ-separable pair $(\mathscr{A} \cup$ $T, \mathscr{R} \cup F)$ and let us suppose the existence of a classifier $L C_{\psi}(\cdot) \in \operatorname{LC}{ }_{\Psi}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\omega_{j}^{\prime}=\beta_{j}^{\prime}$, for all $j=1, \ldots, N$. Let us define $m^{\prime}:=\min \left(g^{T} \beta_{1,1: n}^{\prime}+\right.$ $\left.\beta_{1, n+1}^{\prime}, \ldots, g^{T} \beta_{N, 1: n}^{\prime}+\beta_{N, n+1}^{\prime}\right)$. Then, for any $g \in \mathscr{L}$, we have:

$$
\sum_{j=1}^{N}\left(\psi_{j}(g)\right)^{T} \beta_{j}^{\prime}=\sum_{k=1}^{K}\left(g^{T} \beta_{k, 1: n}^{\prime}+\beta_{k, n+1}^{\prime}\right)=K m^{\prime}
$$

where $\beta_{k, 1: n}^{\prime}$ is the vector containing the first n components of β_{k}^{\prime}, for every k, and where again $\left(g^{T} \beta_{k}^{\prime}+\beta_{k, n+1}^{\prime}\right)=m^{\prime}$, for all $k=1, \ldots K$, with $1 \leq K \leq N$. Let us consider a binary piecewise affine classifier $P A C(\cdot)$ with parameters $\left\{\boldsymbol{\beta}_{j, 1: n}^{\prime}, \boldsymbol{\beta}_{j, n+1}^{\prime}\right\}_{j=1}^{N}$. Then, again, g is classified in the same way by the classifiers $L C_{\psi}(\cdot)$ and $P A C(\cdot)$. This is in particular true for $g \in \mathscr{A} \cup T$ and $g \in \mathscr{R} \cup F$. This means also that $\beta_{j, 1: n}^{\prime} \geq 0$, for all $j=1, . ., N$ and $\beta_{j, n+1}^{\prime} \geq 0$, for all $j=1, . ., N$, with at least a $\beta_{k, n+1}^{\prime}=0$.

Lemma 25 Given a pair of finite sets $(\mathscr{A}, \mathscr{R})$ for which there exists a positive additive coherent set of gambles \mathscr{D}, such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$, then the smallest such set is:

$$
\mathscr{D}=\uparrow(\mathscr{A} \cup\{0\}):=\{g:(\exists f \in \mathscr{A} \cup\{0\}) g \geq f\}
$$

Proof $\uparrow(\mathscr{A} \cup\{0\})$ satisfies D1, D3** and $\mathscr{A} \subseteq \uparrow(\mathscr{A} \cup$ $\{0\}$) by construction. Moreover, it satisfies also D4 by Proposition 21, because it is closed respect to the usual topology of \mathbb{R}^{n} (it is a finite union of closed sets).

Let us indicate with $\mathrm{P}(\mathscr{A}, \mathscr{R})$, the class of positive additive coherent sets of gambles \mathscr{D}, such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$. Clearly, each $\mathscr{D} \in \mathrm{P}(\mathscr{A}, \mathscr{R})$ satisfies $\mathscr{D} \supseteq \uparrow(\mathscr{A} \cup\{0\})$. But, every $\mathscr{D} \in \mathrm{P}(\mathscr{A}, \mathscr{R})$, satisfies also $\mathscr{D} \cap(\mathscr{R} \cup F)=\emptyset$. Therefore, $\uparrow(\mathscr{A} \cup\{0\}) \cap(\mathscr{R} \cup F)=\emptyset$. So, it is also the smallest positive additive coherent set of gambles $\mathscr{D} \in \mathrm{P}(\mathscr{A}, \mathscr{R})$.

Proof [Proof of Proposition 13] Consider a pair of sets $(\mathscr{A}, \mathscr{R})$ for which there exists a positive additive coherent set of gambles \mathscr{D}, such that $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$. Then the minimal such set is $\uparrow(\mathscr{A} \cup\{0\})$. However, it can be rewritten as:

$$
\uparrow(\mathscr{A} \cup\{0\})=\{g \in \mathscr{L}: P W P C(g)=1\}
$$

where $P W P C(\cdot)$ is a PWP classifier, defined as:

$$
P W P C(g):= \begin{cases}1 & \text { if } \exists f^{j} \in(\mathscr{A} \cup\{0\}) \text { s.t. } g \geq f^{j} \\ -1 & \text { otherwise }\end{cases}
$$

Therefore, given that $\mathscr{A} \cup T \subseteq \uparrow(\mathscr{A} \cup\{0\})=\{g$: $P W P C(g)=1\}$ and $(\uparrow(\mathscr{A} \cup\{0\})=\{g: P W P C(g)=$
$1\}) \cap(\mathscr{R} \cup F)=\emptyset$, we have that $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ is $P W P$ separable. Vice versa, consider a $P W P$ separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $P W P C(\cdot) \in \operatorname{PWPC}(\mathscr{A} \cup$ $T, \mathscr{R} \cup F)$. Then:

$$
\mathscr{D}:=\{g: P W P C(g)=1\}
$$

is, by construction, a positive additive coherent set of gambles. Indeed, it clearly satisfies D1, D2, D3**. Further, it is closed because it is a finite intersection of closed sets (respect to the usual topology of \mathbb{R}^{n}) hence, by Proposition 21, it satisfies D4. It satisfies also $\mathscr{D} \supseteq \mathscr{A}$ and $\mathscr{D} \cap \mathscr{R}=\emptyset$ by hypothesis.

Proof [Proof of Proposition 15] Consider a $P W P$ separable pair $(\mathscr{A} \cup T, \mathscr{R} \cup F)$ and a classifier $P W P C(\cdot) \in$ $\operatorname{PWPC}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\mathscr{F}=\left\{f^{j}\right\}_{j=1}^{N}$.

Then, a classifier $L C_{\rho}(\cdot)$ of the type (14), with parame-
ters $\omega^{j}=f^{j}$ and $\beta_{j}^{\prime}=\left[\begin{array}{c}1 \\ \cdots \\ 1 \\ -f_{1}^{j} \\ \cdots \\ -f_{n}^{j}\end{array}\right]$, for all $j=1, \ldots, N$, classifies $\mathscr{A} \cup T$ as 1 and $\mathscr{R} \cup F$ as -1 .

Indeed,consider $g \in \mathscr{L}$ and let us define $m:=$ $\max _{k}\left(\min _{l}\left(g_{l}-f_{l}^{k}\right)\right)$. Then:

$$
\sum_{j=1}^{N}\left(\rho_{j}(g)\right)^{T} \beta_{j}^{\prime}=\sum_{j=1}^{N} \sum_{i=1}^{n} \mathbb{I}_{\zeta_{i j}}(g)\left(g_{i}-f_{i}^{j}\right)=K L m
$$

where, for every $i, j, \zeta_{i j}$ are the partitions of the type 13 with $\omega^{j}=f^{j}$ and where $1 \leq L \leq n, 1 \leq K \leq N$. Hence, g is classified in the same way by the classifiers $P W P C(\cdot)$ and $L C_{\rho}(\cdot)$. Therefore, in particular, if $g \in(\mathscr{A} \cup T), m \geq 0$ and hence $L C_{\rho}(g)=1$. If instead $g \in(\mathscr{R} \cup F)$ then $m<0$ and hence $L C_{\rho}(g)=-1$.

Vice versa, let us consider a P-separable pair $(\mathscr{A} \cup$ $T, \mathscr{R} \cup F)$ and let us suppose the existence of a classifier $L C_{\rho}(\cdot) \in \mathrm{LC}_{P}(\mathscr{A} \cup T, \mathscr{R} \cup F)$ with parameters $\left\{\beta_{j}^{\prime}\right\}_{j=1}^{N}$ such that $\beta_{j, i}^{\prime}>0$, and $\omega_{i}^{j}=-\frac{\beta_{j, i+n}^{\prime}}{\beta_{j, i}^{\prime}}$ for all $i=1, . ., n, j=$ $1, \ldots, N$. Let us define $m^{\prime}:=\max _{k}\left(\min _{l}\left(g_{l}-\left(-\frac{\beta_{k, l+n}^{\prime}}{\beta_{k, l}^{\prime}}\right)\right)\right)$. Then, for any $g \in \mathscr{L}$:

$$
\begin{aligned}
& \sum_{j=1}^{N}\left(\rho_{j}(g)\right)^{T} \beta_{j}^{\prime}=\sum_{j=1}^{N} \sum_{i=1}^{n} \mathbb{I}_{\zeta, j}(g)\left(\beta_{j, i}^{\prime} g_{i}+\beta_{j, i+n}^{\prime}\right)= \\
& \sum_{j=1}^{N} \sum_{i=1}^{n} \beta_{j, i}^{\prime} \mathbb{I}_{\zeta_{i, j}}(g)\left(g_{i}-\left(-\frac{\beta_{j, i+n}^{\prime}}{\beta_{j, i}^{\prime}}\right)\right),=m^{\prime} \sum_{j=1}^{K} \sum_{i=1}^{L} \beta_{j, i}^{\prime}
\end{aligned}
$$

with $1 \leq K \leq N, 1 \leq L \leq n$. Let us consider a PWP classifier $P W P C(\cdot)$ with parameters $\mathscr{F}=\left\{f^{j}\right\}_{j=1}^{N}$, such that $f_{i}^{j}=-\frac{\beta_{j, i+n}^{\prime}}{\beta_{j, i}^{\prime}}$, for all i, j. Then, again, g is classified in the
same way by the classifiers $L C_{\rho}(\cdot)$ and $P W P C(\cdot)$. This is in particular true for $g \in \mathscr{A} \cup T$ and $g \in \mathscr{R} \cup F$.

