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Abstract

A method for constructing consonant predictive beliefs
for multivariate datasets is presented. We make use of
recent results in scenario theory to construct a family
of enclosing sets that are associated with a predictive
lower probability of new data falling in each given set.
We show that the sequence of lower bounds indexed by
enclosing set yields a consonant belief function. The
presented method does not rely on the construction of a
likelihood function, therefore possibility distributions
can be obtained without the need for normalization.
We present a practical example in two dimensions for
the sake of visualization, to demonstrate the practical
procedure of obtaining the sequence of nested sets.
Keywords: Predictive beliefs; Consonant random sets;
Generalization error; Imprecise probability; Evidence
theory.

1. Introduction

A very common problem in engineering science is that
of computing with multivariate sample sets making the
least amount of assumptions. Multivariate sample sets are
difficult to deal with because even when it is possible to
learn a joint probability distribution, it is often very chal-
lenging to characterize the uncertainty associated with any
particular choice. We propose a method to characterize the
uncertainty associated with constructing a joint distribution
directly from the data using scenario theory. We show that
the mechanism that constructs such joint distribution is
designed to yield coherent lower predictive probabilities
nicely fitting within the imprecise probability paradigm.
We present a way to construct consonant random sets—
or possibility measures—that is rooted in scenario theory
[5]. We resort to the generalization property of scenario
theory whereby given a set of independent observations,
the bounds on the predictive probability of a future obser-
vation can be computed. Recent works including [8] have
elaborated on the complexity and the feasibility of such
computations in highly multi-dimensional datasets. A re-
cent overview on scenario theory can be found here [14].

© 2021 M. DeAngelis, R. Rocchetta, A. Gray & S. Ferson.

This paper is also inspired by [12], whereby the problem of
inferential uncertainty is cast within the imprecise probabil-
ity paradigm, see also [10, 11]. Other papers on this topic
are [9, 1, 13, 7]. This work focuses on two main aspects: (i)
we propose a method to systematically obtain a sequence of
enclosing sets with assigned probability bounds by means
of scenario theory, (ii) we show that the lower predictive
probability—also known as predictive belief—associated to
the enclosing sets obtained as such, constitutes a possibility
distribution, thus is a coherent lower probability. The advan-
tage of resorting to scenario optimization to construct these
sets resides in the flexibility of choosing a parametric model
for the shape of the enclosing sets that are guaranteed to ef-
ficiently contain all the data. Moreover this method enables
the encoding of both aleatory and epistemic dependence
within the same framework.

2. Problem Statement

Let X be a random variable on a domain 2~ with unknown
probability distribution Px. We would like to quantify the
beliefs held by an agent about a random future realization of
X from past observations Xi, ..., X, randomly drawn from
the same distribution and mutually independent (iid). This
question is typically addressed within probability theory
either using Bayesian inference or with classical statistical
inference, however when the sample size is limited nei-
ther approach yields a unique answer, without additional
modelling assumptions, especially in the multivariate case.
With scenario theory we aim to characterize the uncertainty
about the distribution Py using a consonant predictive be-
lief function given some random data (scenarios).

2.1. Predictive Beliefs and Belief Functions

Given iid random samples X, ..., X,,, with parent probabil-
ity distribution Py, we want to produce a belief function,
denoted by Bely :=Bel(-;X;,---,X,), in such a way that
the inequality Bely < Py, will hold at least in 100(1 — )%
of the cases. Which properties should Bely satisfy? As
more and more data are gathered, it seems reasonable to
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postulate that Bely = Py, from a frequentist perspective
[7]. A sample set of infinite size should be equivalent to
knowledge of the distribution of X, hence the belief func-
tion should asymptotically become identical to Px. For
finite n, it seems natural to impose that Bely will be less
committed than Py, which leads to Bely < Py. However,
because of limited knowledge, the inequality is often too
stringent to hold in all cases. In other terms, assuming
the experiment is repeated indefinitely, we demand Bely
to be less committed than Px most of the time, with at
least some prescribed long run frequency 1 — 8, where
B € (0,1) is a small number. In summary, the following
two requirements are typically imposed to the belief func-
tion: (1) VA C Z7,Belx(A) — Px(A), asn — o, and (2)
P"(Bely <Px) > 1— . A belief function satisfying these
two requirements is called a predictive belief function at
confidence level 1 — 3. Several methods have been pro-
posed to construct these belief functions, like in [7], using
multinomial confidence intervals, and then further extended
to the continuous case [1]. In this work, we restrict our con-
struction to sets that are mutually nested, and resort to
scenario theory to compute the belief measure. The conso-
nant belief function obtained as such will therefore satisfy
the second requirement, but not the first requirement. Let us
recall now that belief functions are coherent lower probabil-
ities. Given a power set 2, the function m : 2% — [0, 1]
is called a basic belief assignment, if the following two
properties hold: (i) m(0) = 0, (ii) Y 4,2 m(A) = 1. The
mass m(A) can be interpreted as the part of the agent’s
belief allocated exactly to the hypothesis that X takes some
value in A [15]. The subsets A C 2" such that m(A) > 0
are called the focal sets of m. For any focal set A € 2% | its
belief can be obtained summing up the masses of the focal
elements B € 2% contained in it,

Be|x(A) =

Y m(B). (1)

B:BCA

When the focal sets are nested, Bely is said to be consonant.
Consonance has recently been used to build confidence pre-
serving structures [3]. Eq. 1 constitutes a lower bound on
the true yet unknown probability Px (A) to the hypothesis
that X takes some value in A. Thus the belief function in Eq.
1 falls in a subclass of coherent lower probabilities [2, 6].
We propose an algorithm to construct recursively enclosing
sets of predictive beliefs, which are also known as necessi-
ties, directly from data. The resulting consonant structure
provides a lower bound on the probability of observing new
data in any given enclosing set. Note that by limiting this
approach to consonant beliefs, the second reequirement
cannot be reached for all events, even when n — . This
is because the consonant belief structure is effectively a
possibility distribution, which always corresponds to a mul-
titude of probability distributions, thus never converges to
a single probability distribution [16].
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3. Scenario Theory

Consider a closed bounded set B C R™, like one of the
rectangles in Figure 1 where m = 2. Let us consider a
vector of parameters z € 2 C R that uniquely identify B,
e.g. its size and location. Given a convex cost function f(z)
e.g. the area of the rectangle, a family of convex constraints
7€ %% CRY, parametrized by the data X, and a sample
set Xi,...,X,, with d < n, of iid realizations, the following
optimization program

min f(z)

eZ
subjectto: z € (| Zx,

i=1,...,n

2

2ty

determines the optimal set B, while Xi,...,X,, are called
scenarios, which have to be interpreted as observations
from which one wants to make a decision, i.e. select an
optimal value of z. Eq. 2 is a standard convex problem
that can be numerically solved with common software.
From this point on, the optimization of Eq.2 will only be
used to identify the number of scenarios k that are active
constraints, i.e. those points that prevent the cost function
from further improving.

Definition 1 (Enclosing set of degree k) The optimal set
B C R™, that strictly contains n — k observations is referred
to as an enclosing set of degree k, and it is denoted by By,
where k is the number of observations strictly not contained
in By, i.e. either on the borders or outside By,.

The observations lying exactly on the border of B are
also known as active scenarios. Note that k is a random
variable because it is a function of the data, while By, is
a realization of the random set expressed by the belief
function. Given a parametric set B, e.g. a hyper-box or an
ellipsoid, the optimization program in Eq.2 is tasked to
identify the number of active scenarios for a given subset
of observations that are to be enclosed. If the optimization
problem is convex the optimal set is unique and can be
computed exactly.

Definition 2 (Lower bound probability of degree k)
The precise predictive probability of a given enclosing set
of degree k: Px(By), has a lower bound Py with assigned
one-sided coverage probability. For a fixed and arbitrarily
small B € (0,1), and a number k € Z. of active scenarios
the coverage probability of the given set By, is
P" (p, <Px(By) > 1-B, 3)
Where P" is the product probability (Xj,...,X,) due to in-
dependence of the samples. The (one-sided) lower bound
P is a random variable of the probability space of the data

generating mechanism and can be computed using the for-
mula and code provided in [4]. A code for the two-sided
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case for both lower and upper bounds is provided in [8].
The solution #; to the polynomial equation,

5 (- ()eeo

is unique in the interval (0, 1). Under the two assumptions
of uniqueness and non-degeneracy, it holds that p; = t,
see Theorem 2 in [4]. To compute #; a simple bisection
algorithm can be used. More about the two assumptions
can also be found in [4]. The positive integer k can be
interpreted in multiple ways: (i) as a parameter defining
how complex is our decision z; (ii) the minimum number
of scenarios/samples that are necessary to reconstruct the
optimized z; (iii) an over-fitting parameter which constitutes
the key for constructing consonant sets as described in the
next section.

n+t1 @

4. Method for Constructing Consonant
Predictive Beliefs
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Figure 1: Consonant box-shaped enclosing sets.

The proposed method for constructing sequentially en-
closing sets is very straightforward. Let us consider the
observations X; € R? withi = 1,--- ,n shown as scatter plot
in Figure 1. A simple shape for the enclosing set is for
example a rectangle. The rectangle with the smallest area
enclosing the dataset X; is uniquely determined by at most
k observations, which are the so called active scenarios.
We denote this rectangle by By. Note that in the case of a
rectangle the number of support scenarios is at least two.
Also note that the value of k is data dependent (random) and
is affected by the functional form of B. Given a fixed and ar-
bitrarily small § € (0, 1) the predictive belief p, associated
with Bj can be computed finding the roots of the polyno-
mial in Eq.3, which is independent on the shape of the set.
the base of the Aztec pyramid shown from above in Figure
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1 corresponds to the rectangle-shaped set enclosing all the
observations. This set is associated with the largest pre-
dictive belief. The algorithm that constructs the sequence
of nested rectangles proceeds by cumulating the number
of active scenarios k until all the observations have been
converted to support scenarios. In particular we propose to
use a simple arithmetic progression with common differ-
ence equal to the number of active scenarios at the given
iteration, to encourage symmetry in the resulting sequence
of nested sets. The second iteration determines a rectangle
whose support scenarios are sought in the dataset stripped
of the observations that were identified as active scenarios
at the previous iteration. This procedure is repeated until no
more observations can be found in a given set, thus guaran-
teeing consonance of the constructed rectangles. In Figure
2 the two marginal plausibility distributions that result from
the procedure are shown. Because of Eq.3, any sequence

of active scenarios verifying 0 = ko < k; < --- <k, =n,
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Figure 2: Plausibility contours obtained from Eqgs.5 and 6,
projecting onto the coordinate axes.

4.1. The Lower Bound Py Is a Predictive Belief

We are ready to state the main result of this paper:

Theorem 3 The lower bound p, s a sequence of valid
predictive beliefs for any k € Zy such that 0 = ko < k| <
- <k,=n.

Proof Eq.3 guarantees that the lower bound p, is always
non-increasing with k, see also Eq. 5. Two sets obtained
from the same scenario optimization program, but with
different number of active scenarios are always weakly
nested to one another , see Eq. 6. This suffices to provide a
strong condition for the sequence of lower bounds p, to be
valid beliefs. u
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