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Abstract
The paper considers various extensions of the Hartley
measure on credal sets and their investigation based
on a system of axioms.
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1. Introduction

In the theory of imprecise probabilities [4, 23], there are
many functionals for measuring uncertainty [5, 11, 19].
Among them we distinguish measures of conflict, non-
specificity and total uncertainty. Conflict is related to mod-
eling uncertainty by probability measures; non-specificity
is connected to the choice of a probability model among
possible ones. The total uncertainty is conceived as aggre-
gated uncertainty of these two types. Historically, measures
of conflict have been firstly introduced in probability the-
ory, and they are known as entropies [22, 20]. The most
popular of them are the Shannon entropy and Rényi en-
tropies. The measure of non-specificity has been firstly
introduced for analyzing information that can be described
by non-graded possibility measures and called the Hartley
measure [18]. There are several attempts to extend these
measures to various models of imprecise probabilities [1, 5],
or especially to belief functions [16]. As we can see from
the literature [2, 3, 5, 11, 19] the most justified of them
are the maximal (upper) entropy for evaluating total uncer-
tainty, the minimal (lower) entropy for measuring conflict
and the generalized Hartley measure as a measure of non-
specificity.

Unfortunately, the generalized Hartley measure was fully
accepted only for belief functions. Although there are sev-
eral extensions of it to coherent lower probabilities and
credal sets [1, 5], the thorough investigation of their prop-
erties was not produced yet. To close these gap, in this
paper we consider three possible extensions of the Hartley
measure to credal sets. The third one is new and based on
an interpretation of the Hartley measure in decision theory
as follows. An imprecise probability model can be viewed
as a system of precise probability models. We call two
probability models P1 and P2 fully contradictory if there
is a decision f on the set of alternatives X = {x1, ...,xn}

whose utility is the highest and equal to max
x∈X

f (x) for P1

and the utility of f is the smallest and equal to min
x∈X

f (x)

for P2. We show that the Hartley measure can be viewed
as the logarithm of the maximal number of pairwise fully
contradictory probability measures in the corresponding
credal set. We also introduce the notion of ε-contradictory
probability measures, and make hints of how to generalize
the Hartley measure in this way.

The paper has the following structure. In Section 2, we
recall the basic notions from the theory of belief functions
and imprecise probabilities. Section 3 gives the axioms of
classical uncertainty measures: the Shannon entropy and
the Hartley measure. In Sections 4 and 5, we recall [5]
the axioms for uncertainty measures on belief functions,
the possible disaggregations of a measure of total uncer-
tainty onto measures of conflict and non-specificity and
the extension of these results on credal sets. In Section 6,
we describe some properties of the linear extension of the
generalized Hartley measure on coherent lower probabili-
ties and credal sets. In Section 7, we introduce the Hartley
measure on credal sets and investigate its properties. The
paper is ended with the discussion of obtained results.

2. Monotone Measures and Credal Sets
Let X be a finite non-empty set and let 2X denote the pow-
erset of X . Then a set function µ : 2X → [0,1] is called a
monotone measure or capacity [13, 15] if

1) µ( /0) = 0, µ(X) = 1 (norming);
2) µ(A)6 µ(B) for every A,B ∈ 2X with A⊆ B (mono-

tonicity).
Note that a probability measure is a special case of mono-

tone measures. In this case, µ(A)+ µ(B) = µ(A∪B) for
any disjoint A,B ∈ 2X . We denote by Mmon(X) the set of
all monotone measures on 2X , and by Mpr(X) the set of
all probability measures on 2X . We will further use the
following operations and relations on monotone measures.
Let µ1,µ2 ∈Mmon(X), then

1) µ = aµ1 + (1− a)µ2, where a ∈ [0,1], if µ(A) =
aµ1(A)+(1−a)µ2(A) for all A ∈ 2X (µ is called the con-
vex sum of µ1 and µ2)1;

1. Sometimes, we use the convex sum µ = aµ1 + (1− a)µ2, where
µi ∈Mmon(Xi), i = 1,2, and X1 ∩X2 = /0. In this case, µ ∈Mmon(X),
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2) µ1 6 µ2 if µ1(A)6 µ2(A) for all A ∈ 2X ;
3) µ2 = µ1

d if µ2(A) = 1−µ1(Ac) for all A ∈ 2X , where
Ac denotes the complement of A (µ2 is called the dual of
µ1).

µ is called a lower probability [4, 23] if the set P(µ) =
{P ∈Mpr(X)|P > µ}is not empty, if, in addition, µ(A) =

inf
P∈P(µ)

P(A) for all A∈ 2X , then µ is called a coherent lower

probability. The family of probability measures P(µ) is
called the credal set. More generally, a credal set P is a non-
empty convex and closed subset of Mpr(X). The convexity
means that P1,P2 ∈ P implies that aP1 +(1−a)P2 ∈ P for
every a ∈ [0,1]. The closeness of P means that if we repre-
sent every P ∈Mpr(X), where X = {x1, ...,xn}, as a point
P = (P({x1}), ...,P({xn})) in Rn, then P is a closed subset
of Rn. Instead of defining credal sets using lower probabil-
ities, we can do it by upper probabilities. A µ ∈Mmon(X)
is called an upper probability if µd is a lower probabil-
ity. It is easy to show that {P ∈ Mpr(X)|P > µ} = {P ∈
Mpr(X)|P 6 µd} for every lower probability µ ∈Mmon(X),
i.e. imprecise probability models based on conjugate lower
and upper probabilities are equivalent. Analogously if µ is
a coherent lower probability, then µd is called a coherent
upper probability.

If µ ∈Mmon(X) has the property µ(A)+µ(B)≤ µ(A∩
B) + µ(A ∪ B) for all A,B ∈ 2X , then it is called 2-
monotone [13, 15]. It is possible to show that every 2-
monotone measure is a coherent lower probability. The
set of all 2-monotone measures on 2X is denoted by
M2−mon(X).

An important example of coherent lower probabilities
(2-mononotone measures) are belief functions [21]. A µ ∈
Mmon(X) is called a belief function if there is m : 2X → [0,1]
called the basic belief assignment (bba) with ∑A∈2X m(A) =
1 and m( /0) = 0 such that µ(A) = ∑B∈2X |B⊆A m(B). The set
of all belief functions on 2X is denoted by Mbel(X). Assume
that µ ∈Mbel(X) with the bba m. A set A ∈ 2X is called a
focal element for µ if m(A)> 0. The set of focal elements
is called the body of evidence. A belief function with only
one focal element B is called categorical and denoted by
η〈B〉. Obviously,

η〈B〉(A) =
{

1, B⊆ A,
0, otherwise.

Every Bel ∈ Mbel(X) with the bba m is represented as a
convex sum of categorical belief functions:

Bel = ∑
B∈2X

m(B)η〈B〉.

In the sequel, we will consider credal sets with a finite
number of extreme points, and the set of all such credal sets
on 2X is denoted by Cr(X). If P1, ...,Pm ∈ P are extreme

where X = X1∪X2, and µ(A) = aµ1(A∩X1)+(1−a)µ2(A∩X2) for
all A ∈ 2X .

points of P ∈Cr(X), then every P ∈ P can be represented
as a convex sum of P1, ...,Pm, i.e. P = ∑

m
i=1 aiPi for some

ai > 0, i = 1, ...,m, with ∑
m
i=1 ai = 1.

In notations like Mpr(X), Cr(X), we can drop the refer-
ence set X , if its definition in the context is not necessary.

3. Hartley Measure and Shannon Entropy

The Hartley measure H evaluates uncertainty if we only
know that the unknown value of a random variable ξ is in a
finite set A. Let us formulate the desirable properties of such
non-specificity measure. We suppose that H : P→ [0,+∞),
where P is the family of all finite non-empty sets.

H1. Boundary condition: H(A) = 0 for A∈P iff |A|=
1.

H2. Monotonicity: H(A)6 H(B), A,B ∈P , if A⊆ B.
H3. Label independency: let ϕ : A→ B be a bijection

between finite sets A,B ∈P , then H(A) = H(B).
H4. Additivity: H(A×B) =H(A)+H(B) for A,B∈P .
Let us discuss the above properties. Property H1 says

that only in the case of exact information, when |A| = 1,
the value of H is equal to zero. According to the Property
H2, knowing that ξ (ω) ∈ A is more exact than ξ (ω) ∈ B,
therefore, H(A) 6 H(B). The bijection ϕ in Property H3
can be conceived as giving new names to the elements
of A. Thus, this renaming does not affect the uncertainty.
Property H4 means the following. Assume that we have two
random variables ξ and η , and we only know that ξ (ω)∈ A
and η(ω) ∈ B, then we can conclude that (ξ (ω),η(ω)) ∈
A×B. We assume that if we aggregate two independent
(non-interacted) pieces of information, then uncertainty
behaves additively. This implies Property 4.

Properties H2 and H4 imply the subadditivity property.
H5. Subadditivity: Let A ∈P be such that A⊆ X ×Y

and let AX and AY be its projections on X and Y , respec-
tively, i.e. AX = {x ∈ X |∃y ∈Y : (x,y) ∈ A} and AY = {y ∈
Y |∃x ∈ X : (x,y) ∈ A}. Then H(AX )+H(AY )> H(A).

It is possible to show that every functional H with Proper-
ties H1-H4 can be represented in the form: H(A) = c ln |A|,
where c > 0. If we additionally require that H(A) = 1 if
|A|= 2, then H(A) = log2 |A|.

The situation, when we only know that ξ (ω)∈ A, can be
described by the set of all possible probability distributions
of ξ that coincides with Mpr(A), or by the categorical belief
function η〈A〉, because, Mpr(A) = {P ∈Mpr(X)|P > η〈A〉}.

Another special case is when a random variable ξ takes
its values in a finite set X and we know the probability dis-
tribution of ξ . Before describing an uncertainty measure S
for this case, called the Shannon entropy, we will introduce
the following constructions:

a) let ϕ : X → Y and µ ∈Mmon(X), then the image µϕ

of µ is defined by µϕ(B) = µ(ϕ−1(B)), where ϕ−1(B) =
{x ∈ X |ϕ(x) ∈ B};
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b) let µ ∈Mmon(X×Y ), then projections µX and µY on
X and Y , respectively, are defined by µX (A) = µ(AX ) and
µY (A) = µ(AY ) for every A ∈ 2X×Y .

The Shannon entropy is the functional S : Mpr→ [0,+∞)
with the following properties:

S1. Boundary condition: S(P) = 0 for P ∈Mpr(X) iff
P = η〈{x}〉 for some x ∈ X .

S2. Label independency: let ϕ : X → Y be a bijection
between finite sets X and Y , and P∈Mpr(X), then S(Pϕ) =
S(P).

S3. Expansibility: let ϕ : X → Y be an injection such
that X ⊆Y and ϕ(x)= x for every x∈X , then S(Pϕ)= S(P)
for every P ∈Mpr(X).

S4. Additivity: let P ∈ Mpr(X × Y ), then S(P) =

∑
y∈Y

PY ({y})S(P|y)+S(PY ), where P|y ∈Mpr(X) is defined

by P|y(A) = P(A×{y})/PY ({y}) for everyA ∈ 2X .
S5. Subadditivity: let P ∈ Mpr(X ×Y ), then S(PX ) +

S(PY )> S(P).
Note that Properties S1-S2 have the same interpretation

as for the Hartley measure. Property S3 means that adding
dummy elements to X does not affect the value S(P). Prop-
erties S2-S3 are equivalent to

S2-S3. Let ϕ : X→Y be an injection, then S(Pϕ) = S(P)
for every P ∈Mpr(X).

Property S4 has the following interpretation. Let P ∈
Mpr(X ×Y ) describe the joint probability distribution of
random variables ξX and ξY with values in Xand Y , re-
spectively. Then Property S4 is equivalent to H(ξX ,ξY ) =
H(ξX |ξY )+H(ξY ), where H(ξX ,ξY ) is the entropy of the
joint probability distribution of ξX and ξY , and H(ξX |ξY )
is the entropy of ξX given ξY . The weak form of Property
S4 is

S4*. S(PX×PY ) = S(PX )+S(PY ) for every PX ∈Mpr(X)
and PY ∈Mpr(Y ), where P=PX×PY on 2X×Y is the product
of PX and PY defined by P({(x,y)}) = PX ({x})PY ({y}) for
all x ∈ X and y ∈ Y .

Clearly, Property S4 has the form of Property S4* for
independent random variables ξX and ξY .

Property S5 means that the maximal uncertainty for the
pair of random variables ξX and ξY with known probability
distributions is achieved, when ξX and ξY are independent.
It is possible to prove that Properties S1-S5 imply that S
has the following form:

S(P) =−c ∑
x∈X

P({x}) lnP({x}),

where P ∈ Mpr(X), c > 0, and 0ln0 = 0 by convention.
This functional is uniquely defined if we define the norming
condition. Taking S(Pu) = 1 for Pu ∈ Mpr(X) with X =
{x1,x2} and Pu({x1}) = Pu({x2}) = 0.5, we get

S(P) =−∑
x∈X

P({x})log2P({x}).

4. Uncertainty Measures on Belief Functions
While modelling uncertainty by belief functions, we distin-
guish two types of uncertainty: non-specificity and conflict.
Conflict is related to modelling uncertainty by probability
measures; non-specificity comes from the possible choices
of a “true” probability model among admissible ones. We
also need to introduce a measure of total uncertainty that
aggregates uncertainty of these two types. Therefore, we
should define three functionals:

- a measure of conflict UC : Mbel → [0,+∞);
- a measure of non-specificity UN : Mbel → [0,+∞);
- a measure of total uncertainty UT : Mbel → [0,+∞).
In [5], the following system of axioms is proposed (see

also a slightly different system of axioms for UT in [17]).
B1. Boundary condition: UN(µ) = 0 for µ ∈ Mpr(X)

and UC(η〈B〉) = 0 for B ∈ 2X\{ /0}.
B2. Expansibility and label independency: let ϕ :

X → Y be an injection and µ ∈Mbel(X), then UT (µ
ϕ) =

UT (µ), UN (µϕ) =UN (µ), UC (µ
ϕ) =UC (µ).

B3. Monotonicity w.r.t. mapping: let ϕ : X → Y be a
mapping and µ ∈Mbel(X), then UT (µ

ϕ)6UT (µ).
B4. Monotonicity: let µ1,µ2 ∈ Mbel(X) and µ1 6 µ2,

then UN(µ1)>UN(µ2) and UT (µ1)>UT (µ2).
B5. The first additivity property: let µ ∈Mbel(X ×Y )

be such that µ = ∑
A∈2X

mX (A)η〈A×B〉, where B ∈ 2Y/{ /0},

µX = ∑
A∈2X

mX (A)η〈A〉 and µY = η〈B〉, then

UT (µ) =UT (µX )+UT (µY ).

B6. The second additivity property: let µ ∈
Mbel (X×Y ) and µY ∈Mpr (Y ), then

UT (µ) = ∑
y∈Y

µY ({y})UT
(
µ|y
)
+UT (µY ) .

where µ|y(A) =
µ(A×{y})
µY ({y}) , A ∈ 2X .

B7. Subadditivity: let µ ∈Mbel(X×Y ), then UT (µX )+
UT (µY )>UT (µ).

B8. Disaggregation: UC(µ)+UN(µ) = UT (µ) for ev-
ery µ ∈Mbel(X).

Let us observe that if we consider the restriction of
the above axioms for probability measures, then we get
Properties S1-S5 of the Shannon entropy, analogously,
the restriction of these axioms for categorical belief func-
tions are Properties H1-H5 of the Hartley measure. Thus,
UT (P) = UC(P) = S(P) for every P ∈ Mpr and UT (µ) =
UN(µ) = H(µ) for every categorical belief function µ . Be-
cause the axioms B1-B8 have the same interpretation as the
basic properties formulated for the Shannon entropy and
the Hartley measure, we will explain only some of them.

Consider the following explanation of Axiom B3 given
in [5]. Assume that µ ∈ Mbel(X) and ϕ : X → Y is such
that ϕ(x) = yi if x ∈ Xi, where {X1, ...,Xk} is the partition
of X . Assume also that yi ∈ Xi, i = 1, ...,k. Thus, ϕ has
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the following interpretation: if the true alternative is in Xi,
then it is yi. Because any additional information reduces
uncertainty, we should require that UT (µ

ϕ)6UT (µ).
Since in Axiom B4 P(µ1)⊇ P(µ2), µ1 looks as a model

of uncertainty at least as with the same or higher non-
specificity than µ2. Therefore, we require that UN(µ1) >
UN(µ2) and UT (µ1)>UT (µ2).

Axiom B5 is transformed to Property H4 for the Hartley
measure, when µX is a categorical belief function. Formally,
in Axiom B5 the Möbuis product ×M of µX and µY is used,
because by definition,

µ = µX×MµY = ∑
A∈2X

∑
B∈2Y

mX (A)mY (B)η〈A×B〉,

where mX and mY are bbas of µX and µY , respectively.
Axiom B6 is the generalization of Property H4. Actually,

we get Property H4 taking µX ∈ Mpr(X). Note that the
conditional belief function µ|y is well justified in the theory
of imprecise probabilities. It is possible equivalently to
exchange Axiom B6 to

B6*. Let {X1, ...,Xm} be a partition of X and µi ∈
Mbel(Xi), i = 1, ...,m. Consider µ = ∑

m
i=1 aiµi, where

∑
m
i=1 ai = 1 and ai > 0, i = 1, ...,m. Then UT (µ) =

m
∑

i=1
aiUT (µi)+UT (P), where P ∈Mpr(Y ) is such that Y =

{1, ...,m} and P({i}) = ai, i = 1, ...,m.
There are several results [5], that we will use later. Ax-

ioms B1-B8 imply that
1) UT (∑

m
i=1 aiµi)> ∑

m
i=1 aiUT (µi) for every ∑

m
i=1 ai = 1,

ai > 0, µi ∈Mbel(X), i = 1, ...,m.
2) The set F of all functionals, satisfying Axioms B1-

B8, is a convex cone, i.e. if U (i)
T ∈ F, i = 1,2, then aU (1)

T +

bU (2)
T ∈ F for any a,b > 0. We can impose norming condi-

tions UT (η〈X〉) = a and UT (Pu) = b, where Pu ∈Mpr(X) de-
fines the uniform probability distribution on X and |X |= 2.
Axiom B4 implies that a > b, and we need to take a > 0
providing UT to be not identical zero. We denote the set of
all possible total uncertainty measures with such norming
conditions by Fa,b. There are two different total uncertainty
measures satisfying Axioms B1-B8. It is possible to prove
that Fa,0, a > 0, is a singleton, i.e. such norming conditions
uniquely define the total uncertainty measure that coincides
with the generalized Hartley measure [16]:

GH(µ) = ∑B∈2X m(B)H(B),

where µ ∈ Mbel(X) and m is the bba of µ . The set Fa,a,
a > 0, is also non-empty, since Smax ∈ Fa,a , where Smax is
the maximal (upper) entropy, i.e. Smax(µ) = sup

P∈P(µ)
S(P).

3) There are several admissible disaggregations of UT ∈
F:

a) UC(µ) = inf
P∈P(µ)

UT (P), where UT is the Shannon en-

tropy on Mpr, UN =UT −UC. This UC is denoted by Smin
and called the minimal (lower) entropy.

b) UN(µ) = ∑
B∈2X

m(B)UT (η〈B〉), where m is the bba of

µ ∈Mbel(X), and UC =UT −UN . In this case, UN is obvi-
ously the generalized Hartley measure.

5. Uncertainty Measures on Credal Sets
In [5], a reader can find a system of axioms for uncertainty
measures on credal sets, that generalizes Axioms B1-B8.
For describing them, we define the following operations on
credal sets:

1) let ϕ : X → Y be a mapping and P ∈ Cr(X), then
Pϕ = {Pϕ |P ∈ P};

2) P = aP1+(1−a)P2 for a ∈ [0,1] and P1,P2 ∈Cr(X)
if P = {aP1 +(1−a)P2|P1 ∈ P1,P2 ∈ P2};

3) let P ∈Cr(X ×Y ), then PX = {PX |P ∈ P} and PY =
{PY |P ∈ P};

4) let PX ∈ Cr(X) and PY ∈ Cr(Y ), then PX×NPY =
{P ∈Mpr(X×Y )|PX ∈ PX ,PY ∈ PY}.

Using the above operations, we define axioms for UT ,UC
and UN on Cr as follows [5]:

C1. Boundary condition: let P ∈Cr(X), then UN(P) =
0 if P = {P}, and UC(P) = 0 if P = P(η〈B〉) for some B ∈
2X\{ /0}.

C2. Expansibility and label independency: let ϕ :
X → Y be an injection, then UT (Pϕ) =UT (P), UN (Pϕ) =
UN (P), UC (Pϕ) =UC (P) for any P ∈Cr(X).

C3. Monotonicity w.r.t. mapping: let ϕ : X → Y be a
mapping, and P ∈Cr(X), then UT (P)>UT (Pϕ).

C4. Monotonicity: let P1,P2 ∈Cr(X) and P1⊇P2, then
UN (P1)>UN (P2) and UT (P1)>UT (P2).

C5. The first additivity property: let X , Y be non-
empty finite sets, PX = P

(
η〈A〉

)
, A ∈ 2X\{ /0}, and PY ∈

Cr(Y ), then UT (PX×NPY ) =UT (PX )+UT (PY ).
C6. The second additivity property: let P ∈ Cr(X ×

Y ) and PY = {PY}, then UT (P) = ∑
y∈Y

PY ({y})UT
(
P|y
)
+

UT (PY ) , where P|y =
{

P|y|P ∈ P
}

.
C7. Subadditivity: let X , Y be non-empty finite sets and

P ∈Cr(X×Y ), then UT (PX )+UT (PY )>UT (P).
C8. Disaggregation: UC(P)+UN(P) =UT (P) for every

P ∈Cr.
Axiom C6 can be equivalently exchanged to
C6*. Let {X1, ...,Xk} be a partition of the set X and

P = ∑
m
k=1 akPk, where Pk ∈ Cr (Xk), ak > 0, k = 1, ...,m,

∑
m
k=1 ak = 1. Then

UT (P) =
m

∑
k=1

akUT (Pk)+UT (P),

where P∈Mpr(Y ) is such that Y = {1, ...,m} and P({i}) =
ai, i = 1, ...,m.

What do we know about the possible functionals UT and
its disaggregations? One known possible choice of UT is the
maximal entropy Smax(P) = sup

P∈P
S(P), where P ∈Cr; and
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the possible disaggregation can be based on the minimal
entropy Smin(P) = inf

P∈P
S(P), where P ∈Cr, i.e. UT = Smax,

UC = Smin, and UN =UT −UC. There are several ways to
extend the generalized Hartley measure to credal sets. It
should be noted that any such extension does not satisfy
Axioms C1-C8, as we can see by the next example.

Example 1 Assume that P ∈ Cr(X × Y ),
where X = {x1,x2} and Y = {y1,y2}. Assume
also that any P ∈ P is described by a point
P = (p(x1,y1), p(x1,y2), p(x2,y1), p(x2,y2)), where
p(xi,y j) = P({(xi,y j)}), i, j = 1,2, and P has two extreme
points: P1 = (0,0.5,0.5,0) and P2 = (0.5,0,0,0.5),
i.e. P = {aP1 + (1 − a)P2|a ∈ [0,1]}. We see that
PX = {PX}, where PX = ( 0.5︸︷︷︸

x1

, 0.5︸︷︷︸
x2

), and PY = {PY},

where PY = ( 0.5︸︷︷︸
y1

, 0.5︸︷︷︸
y2

). Assume that UN satisfies the

subaddivity property, i.e. UN(PX ) + UN(PY ) > UN(P).
Because, in our example, UN(PX ) =UN(PY ) = 0, we can
conclude that UN(P) = 0.

Let us check whether the monotonicity w.r.t. mapping
is fulfilled in this case. Consider the mapping ϕ : X ×
Y → Z such that ϕ(x1,y1) = ϕ(x2,y2) = z1, ϕ(x1,y2) =
ϕ(x2,y1) = z2. Then Pϕ = P(η〈Z〉) and UN(Pϕ)> 0 for an
non-trivial UN , but this contradicts to the monotonicity w.r.t.
mapping, since we see that UN(Pϕ)>UN(P).

The first known extension of GH is proposed in [1] and
based on the following construction. Let P ∈Cr(X), then
the corresponding coherent lower probability is defined as

µ(A) = inf
P∈P

P(A), A ∈ 2X .

After that we calculate the Möbius transform [12] m of µ

m(A) = ∑
B⊆A

(−1)|A\B|µ(B),

and finally,

GH1(µ) = ∑
B∈2X

m(B)H(B).

The proof of GH1 monotonicity can be found in [1, 7].
Formally, GH1 can be seen as the linear extension of H to
coherent lower probabilities, and if we use GH1 on credal
sets, then we have the same result if different credal sets
generate the same coherent lower probability. GH1 is not
subadditive and monotone w.r.t. mapping as follows from
the next example.

Example 2 Consider the credal set from Example 1.
Let us compute values of the coherent lower prob-
ability µ . For this purpose, let us denote u1 =
(x1,y1), u2 = (x1,y2), u3 = (x2,y1), u4 = (x2,y2). Then
µ({u1,u2}) = µ({u1,u3}) = µ({u2,u4}) = µ({u3,u4}) =

0.5, µ({u1,u2,u3}) = µ({u1,u2,u4}) = µ({u1,u3,u4}) =
µ({u2,u3,u4}) = 0.5, µ({u1,u2,u3,u4}) = 1. µ is equal to
zero on other sets in 2X×Y . The computation of m results in
m({u1,u2})=m({u1,u3})=m({u2,u4})=m({u3,u4})=
0.5, m({u1,u2,u3}) = m({u1,u2,u4}) = m({u1,u3,u4}) =
m({u2,u3,u4}) =−0.5, m({u1,u2,u3,u4}) = 1. m is equal
to zero on other sets in 2X×Y . Assume that H(B) = log2 |B|
for every B 6= /0. Then GH1(µ) = 2− 2log23+ 2 ≈ 0.83.
We see that both properties C3 and C7 are not fulfilled.

The second extension, introduced in [5], is based on the
inner approximation of GH:

GH2(P) = sup{GH(µ)|P(µ)⊆ P,µ ∈Mbel(X)}.

In [5], a reader can find the proof that GH2 can be used for
disaggregation of UT , and it is subadditive. Formally, we
can also check the first and the second additivity properties
defined as

The first additivity property: let X , Y be non-empty
finite sets, PX = P

(
η〈A〉

)
, A ∈ 2X\{ /0}, and PY ∈ Cr(Y ),

then UN (PX×NPY ) =UN (PX )+UN (PY ).
The second additivity property: let {X1, ...,Xk} be a

partition of the set X and P = ∑
k
i=1 aiPi, where Pi ∈Cr (Xi),

ai > 0, i = 1, ...,k, ∑
k
i=1 ai = 1. Then

UN (P) =
k

∑
i=1

aiUN (Pi).

Clearly, the last property is the counterpart of C6*, in which
we drop the term UN(P) = 0, P ∈Mpr(Y ).

Remark 1 In [5] a reader can find results that GH2 obeys
the first and second additivity properties. Obviously, it can
be used for disaggregation of a measure of total uncertainty.
In the next section, we will check these properties for GH1.

6. Properties of GH1

Theorem 1 GH1 obeys the first additivity property.

Theorem 2 GH1 obeys the second additivity property.

Lemma 1 Let P ∈Mpr(X) and P({x})> 0 for all x ∈ X.
Then the largest credal set P ∈Cr(X) such that P ∈ P and
Smax(P) = S(P) is P = {Q ∈ Mpr(X)|EQ( fS) > EP( fS)},
where fS(x) = lnP({x}), x ∈ X.

Remark 2 Consider how we can generalize Lemma 1 for
the case, when P takes values equal to zero on some single-
tons. Assume that P({x})= 0 for some x∈X and Q({x})>
0, then lim

a→+0
S(aQ+(1−a)P) = +∞, i.e. P({x}) = 0 im-

plies that Q({x}) = 0 for every Q ∈ P, i.e. we can reduce
this problem considering only those elements of X , where
P({x})> 0 like in Lemma 1.
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Remark 3 Let X = {x1, ...,xn}, then the special case of
Lemma 1 is when P({xi}) = 1/n, i = 1, ...,n. In this case,
EQ( f )− EP( f ) = ∑

x∈X
(Q({x})−P({x}) ln(1/n) = 0, for

every Q ∈ Mpr(X), i.e. P = Mpr(X). Note that for other
cases P is a boundary point of P.

The next proposition shows the construction of coher-
ent lower probabilities µ on 2X with P ∈ P(µ) and
Smax(P(µ)) = S(P) for a given P ∈Mpr(X).

Proposition 1 Let P ∈Mpr(X) such that P({x}) > 0 for
all x ∈ X. Consider a subset A ⊆ 2X and a credal set
defined by

P = {Q ∈Mpr(X)|∀A ∈A : Q(A)> P(A)}, (1)

Introduce the corresponding coherent lower probabil-
ity µ defined by µ(A) = inf{Q(A)|Q ∈ P}, A ∈ 2X . Then
P(µ) = P, P ∈ P(µ), and Smax(P(µ)) = S(P) iff there are
aA > 0, A ∈A , and b ∈R, such that ∑

A∈A
aA1A +b1X = fS,

where fS is defined like in Lemma 1.

Corollary 1 Let P ∈ Mpr(X), P({x}) > 0 for all x ∈ X,
and {P({x})|x ∈ X} = {a1, ...,ak}, where values ai are
indexed such that a1 > a2 > ... > ak > 0. Define a credal
set P by formula (1), where and Ai = {x ∈ X |P({x})> ai},
i = 1, ...,k. Then P ∈ P and Smax(P(µ)) = S(P).

Remark 4 It is well known that the credal set from Corol-
lary 1 can be generated by the µ ∈Mbel(X) whose body of
evidence is A and the corresponding bba m is defined as
m(Ai) = ai−ai+1, i = 1, ...,k, where ak+1 = 0 by conven-
tion. Such a µ is a necessity measure, since focal elements
of µ are linearly ordered w.r.t. the inclusion relation.

Example 3 Let X = {x1,x2,x3,x4} and P ∈ Mpr(X) is
defined by P({xi}) = qi, i = 1, ...,4, where q is the pos-
itive root of the equation q4 + q3 + q2 + q− 1 = 0 (q =
0.518 . . . ). Let us construct µ like in Corollary 1. Then
µ ∈ Mbel(X) whose body of evidence is A = {Ai}4

i=1,
where Ai = {x1, ...,xi}, and m(Ai) = qi−qi+1, i = 1, ...,3,
m(A4) = q4. Let us construct µ1 like in Proposition 1 by
the system of sets A1 = {{x1,x2},{x1,x3}}. Let us show
that there is a representation

y11{x1,x2}+ y21{x1,x3}+ y31{x1,x2,x3,x4} = fS, (2)

where y1,y2 > 0, and y3 ∈ R. We see that (2) is equivalent
to the following system of linear equations:

y1 + y2 + y3 = lnq,
y1 + y3 = 2lnq,
y2 + y3 = 3lnq,
y3 = 4lnq.

The solution of this system is y1 =−2lnq, y2 =− lnq, y3 =
4lnq, and yi, i = 1, ...,3, satisfy the required conditions.
The values of µ and µ1 are given in Table 1.

Table 1: Monotone measures for Example 3

x1 x2 x3 x4 µ µ1 µ2

1 0 0 0 q q−q4 q−q4

1 1 0 0 q+q2 q+q2 q+q2

1 0 1 0 q q+q3 q
1 1 1 0 q+q2 +q3 q+q2 q+q2

1 0 0 1 q q−q4 q−q4

1 1 0 1 q+q2 q+q2 q+q2

1 0 1 1 q q+q3 q
1 1 1 1 1 1 1

By Proposition 1, P ∈ P(µ), P ∈ P(µ1), and
Smax(P(µ)) = Smax(P(µ1)) = S(P). Note that the set M =
{µ ∈ Mcoh(X)|P ∈ P(µ),Smax(P(µ)) = S(P)} does not
contain the smallest element in general. To show this con-
sider a coherent lower probability µ2, defined by µ2(A) =
min{µ(A),µ1(A)}, A∈ 2X . The values of µ2 are also given
in Table 1. Consider a probability measure P1 with val-
ues P1({x1}) = q− q4, P1({x2}) = q2 + q4, P1({x3}) =
P1({x4}) = (q3+q4)/2. It is easy to check that P1 ∈ P(µ2),

S(P) =−(q+2q2 +3q3 +4q4) lnq = 1.158...,
S(P1) =−(q−q4) ln(q−q4)− (q2 +q4) ln(q2 +q4)−

(q3 +q4) ln q3+q4

2 = 1.202....

therefore, µ2 /∈M .

Proposition 2 Let P ∈ Mpr(X) with P({x}) > 0 for all
x ∈ X and

M = {ν ∈M2−mon(X)|P ∈ P(ν),Smax(P(ν)) = S(P)}.

Consider a µ ∈M constructed like in Corollary 1. Then
ν > µ for every ν ∈M .

Remark 5 Note the result formulated in Proposition 2
does not contradict Example 3, where we construct µ1 such
that µ1 6> µ , since µ1 /∈M2−mon(X). This can be seen from
the inequality:

µ1({x1,x2})+µ1({x1,x3}) = 2q+q2 +q3 >
µ1({x1})+µ1({x1,x2,x3}) = 2q+q2−q4.

The above results can be seen as the investigation of the
inner approximation of the credal set defined in Lemma 1
by coherent lower probabilities. The next proposition de-
scribes the upper approximation of this credal set.

Proposition 3 Let X = {x1, ...,xn} and P ∈Mpr(X) such
that P({x1}) > P({x2}) > ... > P({xn}) > 0. Consider
the corresponding credal set P = {Q ∈Mpr(X)|EQ( fS)>
EP( fS)} from Lemma 1 and a coherent lower probability µ

on 2X defined by µ(A) = inf{P(A)|P ∈ P}, where A ∈ 2X .
Then
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1) µ(A) = 0 if x1 /∈ A;
2) let x1 ∈A, A 6=X, and l =min{i|xi ∈Ac}, then µ(A)=

(EP( fS)− fS(xl))/( fS(x1)− fS(xl)) if EP( fS)− fS(xl)> 0
and µ(A) = 0 otherwise.

Corollary 2 Let P ∈ Mpr(X), P({x}) > 0 for all x ∈ X,
and {P({x})|x ∈ X} = {a1, ...,ak}, where values ai are
indexed such that a1 > a2 > ... > ak > 0. Let P be the credal
set defined in Lemma 1 and a coherent lower probability µ

on 2X defined by µ(A) = inf{Q(A)|Q ∈ P}. Then

P = {Q ∈Mpr(X)|∀A ∈A : Q(A)> µ(A)},

where A = {Ai}k
i=1 and Ai = {x ∈ X |P({x}) > ai}, i =

1, ...,k.

Remark 6 Since the set A defined in Corollary 2 is lin-
early ordered by the inclusion relation, the measure µ is
a necessity measure (a consonant belief function). Let us
compute at first values of µ on A :

1) µ(Ai) = 0 if EP( fS)− fS(ai+1)6 0;
2) µ(Ai) = (EP( fS)− fS(ai+1))/( fS(a1)− fS(ai+1)) if

EP( fS)− fS(ai+1)> 0 and i 6= k
3) µ(Ak) = 1, since Ak = X .
We can compute the corresponding bba m on by m(Ai) =

µ(Ai)−µ(Ai−1), i = 1, ...,k, where A0 = /0 by convention.
Using the above result, we can compute GH(µ) by the
formula:

GH(µ) =
k
∑

i=1
(µ(Ai)−µ(Ai−1)) ln |Ai|=

k−1
∑

i=1
µ(Ai)(ln |Ai|− ln |Ai+1|)+µ(Ak) ln |Ak| .

Let m(Ak) 6= 1 and j = min{i ∈ {1, ...,k− 1}|EP( fS)−
fS(ai+1)> 0}, then

GH(µ)=
k−1

∑
i= j

(EP( fS)− lnai+1)(ln |Ai|− ln |Ai+1|)
lna1− lnai+1

+ln |Ak| .

Since EP( fS)− lnai+1
lna1− lnai+1

= 1 − lna1−EP( fS)
lna1− lnai+1

and
k−1
∑

i= j
(ln |Ai|− ln |Ai+1|) = ln

∣∣A j
∣∣− ln |Ak|, we get

GH(µ)= ln
∣∣A j
∣∣+k−1

∑
i= j

(lna1−EP( fS))(ln |Ai+1|− ln |Ai|)
lna1− lnai+1

.

In the sequel, we will represent GH(µ) as GH(µ) =
ln
∣∣A j
∣∣+(lna1−EP( fS))F(a), where

F(a) =
k−1

∑
i= j

ln |Ai+1|− ln |Ai|
lna1− lnai+1

.

Example 4 Let us construct an example of a P ∈Cr(X)
for which GH1(P)> Smax(P). Assume that P is constructed

like in Lemma 1, i.e. there is a P∈Mpr(X) with P({x})> 0
for all x ∈ X and such that P = {Q ∈ Mpr(X)|EQ( fS) >
EP( fS)}. In our example we will assume that A1 = {x1},
A2 = {x1, ...,xm}, A3 = X = {x1, ...,xn}, a1 = q2a3 and
a2 = qa3. In addition, these parameters are chosen such
that EP( fS)− ln(a2) = 0. Then

EP( fS)−ln(a2)= a1 ln
(
a1
/

a2
)
+a3(n−m) ln

(
a3
/

a2
)
= 0,

or a3q2 lnq− (n−m)a3 lnq = 0. Thus, we can choose q =√
n−m and the norming condition implies that (n−m)a3+

(m−1)
√

n−ma3 +(n−m)a3 = 1, i.e.

a3 =
1

2(n−m)+(m−1)
√

n−m
,

F(a) =
ln |A3|− ln |A2|

lna1− lna3
=

lnn− lnm
ln(n−m)

,

GH(µ) = ln |A2|+(lna1−EP( fS))F(a) =

lnm+(lna1− lna2)F(a) =

lnm+0.5ln(n−m)
lnn− lnm
ln(n−m)

= 0.5(lnn+ lnm),

a2 =

√
n−m

2(n−m)+(m−1)
√

n−m
=

1
2
√

n−m+(m−1)
,

S(P) =−EP( fS) =− lna2 = ln(2
√

n−m+m−1),

We see that

S(P)−GH(µ) = ln
(

2
√

n−m+m−1√
mn

)
.

Let us denote x = m/n, then

lim
n→∞

(S(P)−GH(µ)) = lim
n→∞

ln
(

2
√

n
√

1− x+nx−1
n
√

x

)
=

0.5lnx < 0,

i.e. S(P)−GH(µ) < 0 if n is sufficiently large. In partic-
ular, if n = 100 and m = 36, then GH1(P) = GH(µ) =
ln60, Smax(P) = S(P) = ln51, and we see that GH1(P)>
Smax(P).

7. The Hartley Measure on Credal Sets
Assume that uncertainty is described by a probability mea-
sure P ∈ Mpr(X) and the choice of the optimal decision
is based on the expected utility, i.e. every decision is de-
scribed by a function f : X → R and the expected utility is
defined as

EP( f ) = ∑
x∈X

f (x)P({x}).

If uncertainty is described by a credal set P, then we only
know the lower and upper bounds of expected utility de-
fined by
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EP( f ) = inf
P∈P

EP( f ), EP( f ) = sup
P∈P

EP( f ).

In the case of total uncertainty, when P = Mpr(X), we have

EP( f ) = min
x∈X

f (x), EP( f ) = max
x∈X

f (x).

We call probability measures P1,P2 ∈ Mpr(X) fully con-
tradictory (inconsistent) if there is a f : X → R with
min
x∈X

f (x) < max
x∈X

f (x) such that EP1( f ) = min
x∈X

f (x) and

EP2( f ) = max
x∈X

f (x).

Lemma 2 P1,P2 ∈Mpr(X) are fully contradictory iff there
is a A ∈ 2X such that P1(A) = P2(Ac) = 0.

The next lemma shows that we can check the full contra-
diction of probability measures using the metric on Mpr(X)
defined by

d(P1,P2) = sup
A∈2X
|P1(A)−P2(A)| .

Lemma 3 Probability measures P1,P2 ∈Mpr(X) are fully
contradictory iff d(P1,P2) = 1.

Remark 7 The distance d between probability measures
plays an important role in measuring contradiction (con-
flict) between sources of information described by credal
sets. A reader can find an important information about this
in [6, 8, 9, 10, 11].

In this paper, we will compute the largest number of pair-
wise fully contradictory probability measures in a credal
set, and this allows us to introduce the Hartley measure
defined on credal sets.

Proposition 4 Consider probability measures P1, ...,Pk ∈
Mpr(X) and sets Ai = {x ∈ X |Pi({x}) > 0}, i = 1, ...,k.
Then these probability measures are pairwise fully con-
tradictory iff Ai∩A j = /0 for any i 6= j.

Proposition 5 Let P be a closed and convex credal set
with a finite number of extreme points. Then the largest
system of pairwise fully contradictory probability measures
can be chosen among extreme points of P.

Remark 8 Assume that P1, ...,Pk are the extreme points
of a credal set P with the corresponding sets Ai, i = 1, . . . ,k
defined like in Proposition 4. Then the problem of finding
the maximal system of pairwise fully contradictory proba-
bility measures in P can be reformulated in terms of graph
theory. Consider the undirected graph G, whose vertices
are sets Ai, i = 1, ...,k, and there is an edge between Ai and
A j, i 6= j, iff Ai ∩A j 6= /0. A set of vertices is called inde-
pendent if every two vertices in it are not adjacent. Thus,
the problem of finding the maximal system of pairwise
fully contradictory probability measures is equivalent to
the problem of finding the independent set in G with the
largest cardinality.

Remark 9 We can conclude from Remark 8 that the
search of the maximal system of pairwise fully contradic-
tory probability measures is NP-hard, however, for special
cases we have the solutions. For example, if P = P(η〈A〉),
then the extreme points of this set are probability measures
η〈{x}〉, x ∈ A, which are pairwise fully contradictory, and
the cardinality of this system is |A|.

Based on Remark 9, we introduce the following definition.

Definition 1 Let P ∈ Cr(X), then the Hartley measure
H(P) = ln(n(P)), where n(P) is the largest number of pair-
wise fully contradictory probability measures in P.

Lemma 4 Let P∈Cr(X), then there is a credal set P1⊆P
and a mapping ϕ : X → Y such that Pϕ

1 = P(η〈Y 〉) and
H(P) = ln |Y |.

The main properties of H are given in the following propo-
sition.

Proposition 6 The Hartley measure H on Cr has the fol-
lowing properties:

1) H(P(η〈A〉)) = ln |A| for every A 6= /0;
2) H(P) = 0 if P = {P}, where P ∈Mpr;
3) let P ∈Cr(X) and ϕ : X → Y , then H(Pϕ) 6 H(P);

in addition, H(Pϕ) = H(P) if ϕ is an injection;
4) let P1,P2 ∈Cr(X) and P1 ⊆ P2, then H(P1)6H(P2);
5) let X, Y be non-empty finite sets, PX = P

(
η〈A〉

)
, A ∈

2X\{ /0}, and PY ∈ Cr(Y ), then H (PX×NPY ) > H (PX )+
H (PY );

6) let {X1,X2} be a partition of the set X and P = aP1 +
(1−a)P2, where Pi ∈Cr (Xi), i = 1,2, and a ∈ (0,1), then
UN(P) = min{UN(P1),UN(P2)}.

7) H(P)6 Smax(P) for every P ∈Cr.

Remark 10 Proposition 6 implies that H can be served as
a non-specificity measure for Smax disaggregation, however,
it does not obey the second additivity property according
to the statement 6) of Proposition 6, and as follows from
the next examples it is not subadditive, and it does not obey
the first additivity property.

Example 5 Consider the credal set P ∈Cr(X ×Y ) from
Example 1. We see that PX = {PX} and PY = {PY}, i.e.
H (PX ) = H (PY ) = 0, and P has only two extreme points
P1 = (0,0.5,0.5,0) and P2 = (0.5,0,0,0.5). Because P1
and P2 are fully contradictory, H(P) = ln2, and H (P) >
H (PX )+H (PY ).

Example 6 Let P = PX×NPY , where X = {x1,x2},
Y = {y1,y2,y3}, PX = P(η〈X〉) and PY ∈ Cr(Y ), defined

by extreme points P(i)
Y , i = 1,2,3, with probabilities:

P(1)
Y ({y1}) = P(1)

Y ({y2}) = 0.5, P(2)
Y ({y2}) = P(2)

Y ({y3}) =
0.5, P(3)

Y ({y1}) = P(3)
Y ({y3}) = 0.5. Consider probability

measures P(i) ∈ P, i = 1,2,3, defined by
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Table 2: Properties of non-specificity measures.

Properties \UN Smax−Smin GH1 GH2 H

Boundary conditions + + + +
Monotonicity + + + +

Monotonicity w.r.t. mapping - - - +
The first additivity property + + + -

The second additivity property + + + -
Subadditivity - - + -

Weak sensitivity + + - -
Strong sensitivity - - - -
Disaggregation + - + +

P(1)({(x1,y1)}) = P(1)({(x1,y2)}) = 0.5,
P(2)({(x2,y2)}) = P(2)({(x1,y3)}) = 0.5,
P(3)({(x2,y1)}) = P(3)({(x2,y3)}) = 0.5.

Since probability measures P(i) ∈ P, i = 1,2,3, are pair-
wise fully contradictory, we conclude that H(P)> ln3. We
see that H(PX ) = ln2 and H(PY ) = ln1 = 0. Therefore,
H (P)> H (PX )+H (PY ), i.e. the first additivity property
is not fulfilled.

8. Discussion and Conclusion

In previous sections, we have analyzed properties of non-
specificity measures. Now we are ready to present the ob-
tained results in Table 2. In Table 2, you can see also proper-
ties that characterize sensitivity of non-specificity measures
formulated as follows:

Weak sensitivity: let P ∈ Cr(X), then UN(P) = 0 iff
P = {P}, where P ∈Mpr(X).

Strong sensitivity: let P1,P2 ∈Cr(X) and P1⊂P2, then
UN(P1)<UN(P2).

A reader can check that UN = Smax−Smin is not subaddi-
tive using the credal set from Example 1. The monotonicity
w.r.t. mapping is not fulfilled for UN = Smax−Smin as shown
in the next example.

Example 7 Assume that X = {x1,x2,x3} and
µ = 0.5η〈{x1,x2}〉 + 0.5η〈{x3}〉. Clearly, Smax(µ) =
−0.5ln0.25− 0.5ln0.5 = 1.5ln2, Smin(µ) = ln2. There-
fore, Smax(µ)− Smin(µ) = 0.5ln2. Consider a mapping

ϕ : X → X defined by ϕ(xi) =

{
xi, i = 1,2,
x2, i = 3.

Then µϕ = 0.5η〈{x1,x2}〉 + 0.5η〈{x2}〉, Smax(µ
ϕ) = ln2,

Smin(µ
ϕ) = 0, i.e. UN(µ

ϕ)>UN(µ) if UN = Smax−Smin.

Based on Example 1, we see that all desirable properties
of non-specificity measures cannot be fulfilled simulta-
neously, for example, if UN is subadditive, then it is not
monotone w.r.t. mapping and weakly sensitive. In opinion,

the sensitivity and monotonicity w.r.t. mapping of a non-
specificity measure has a higher importance, than its subad-
ditivity. It is possible to increase sensitivity of the Hartley
measure on credal sets introducing ε-Hartley measures.
The idea consists in the following. Probability measures
P1,P2 ∈ Mpr(X) are called ε-contradictory for ε ∈ (0,1]
if d(P1,P2)> ε . Then Hε(P), where P ∈Cr(X) is the log-
arithm of the largest number of pairwise ε-contradictory
measures in P. However, the investigation of these mea-
sures is not included in this paper.

It is possible to use the above non-specificity measures
on coherent lower probabilities or 2-monotone measures.
At the first glance, GH1 on 2-monotone measures looks
optimal. This may be the topic for further research.

References
[1] J. Abellán, S. Moral. A non-specificity measure for

convex sets of probability distributions. Int. J. Un-
certain. Fuzz. Knowl.-Based Systems, 8 (3):357–367,
2000.

[2] J. Abellán, S. Moral. Maximum entropy for credal
sets. Int. J. Uncertain. Fuzz. Knowl.-Based Systems,
11 (5): 587—597, 2003.

[3] J. Abellán, S. Moral. Difference of entropies as a
non-specificity function on credal sets. Int. J. Gen.
Systems, 34 (3): 203–217, 2005.

[4] T. Augustin, F.P.A. Coolen, G. de Cooman, M. C. M.
Troffaes (Eds.). Introduction to Imprecise Probabili-
ties, Wiley, New York, 2014.

[5] A.G. Bronevich, G. J. Klir. Measures of uncertainty
for imprecise probabilities: an axiomatic approach.
Int. J. Approx. Reason., 51(4): 365–390, 2010.

[6] A.G. Bronevich, I.N. Rozenberg. The choice of gen-
eralized Dempster-Shafer rules for aggregating belief
functions. Int. J. Approx. Reason., 56: 122–136, 2015.

40



GENERALIZED HARTLEY MEASURES

[7] A.G. Bronevich, A.E. Lepskiy. Imprecision indices:
axiomatic, properties and applications. Int. J. Gen.
Systems, 44(7-8): 812–832, 2015.

[8] A.G. Bronevich, I.N. Rozenberg. Incoherence cor-
rection and decision making based on generalized
credal sets. In: A. Antonucci, L. Cholvy, O. Papini
(Eds.), Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty, 14th European Conference,
ECSQARU 2017, Lugano, Switzerland, in: Proc.,
Lecture Notes in Artificial Intelligence, vol.10369,
Springer International Publishing, Cham, pp.271–281,
2017.

[9] A.G. Bronevich, I.N. Rozenberg. Modelling uncer-
tainty with generalized credal sets: application to
conjunction and decision.Int. J. Gen. Syst., 47 (1):
67—96, 2018.

[10] A.G. Bronevich, I.N. Rozenberg. The contradiction
between belief functions: Its description, measure-
ment, and correction based on generalized credal sets.
Int. J. Approx. Reason., 112: 119–139, 2019.

[11] A.G. Bronevich, I.N. Rozenberg. Metrical approach to
measuring uncertainty. In: M.-J. Lesot, S. Vieira, M.Z.
Reformat, J. P. Carvalho, A. Wilbik, B. Bouchon-
Meunier, R.R. Yager (Eds.), Information Processing
and Management of Uncertainty in Knowledge-Based
Systems, Springer International Publishing, Cham, pp.
124–136, 2020.

[12] A. Chateauneuf, J.-Y. Jaffray. Some characterizations
of lower probabilities and other monotone capacities
through the use of Möbius inversion.Mathematical
Social Sciences, 17: 263–283, 1989.

[13] G. Choquet. Theory of capacities. Annales de
l’Institut Fourier, 5: 131–295, 1953.

[14] A. P. Dempster. Upper and lower probabilities in-
duced by multivalued mapping. Ann. Math. Statist.,
38: 325–339, 1967.

[15] D. Denneberg. Non-additive Measure and Integral,
Kluwer, Dordrecht, 1997.

[16] D. Dubois, H. Prade. A note on measures of specificity
for fuzzy sets. Int. J. Gen. Systems, 10 (4): 279–283,
1985.

[17] D. Harmanec. Toward a characterization of uncer-
tainty measure for the Dempster–Shafer theory. In:
Proc. of the Eleventh International, Conference on Un-
certainty in Artificial Intelligence, Montreal, Canada,
pp. 255–261, 1995.

[18] R.V.L. Hartley. Transmission of information. Bell Sys-
tem Technical J., 7 (3): 535—563, 1928.

[19] G. J. Klir. Uncertainty and Information: Founda-
tions of Generalized Information Theory. Wiley-
Interscience, Hoboken, NJ, 2006.

[20] A. Rényi. On measures of entropy and information.
In: Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, vol. 1,
Contributions to the Theory of Statistics, University
of California Press, Berkeley, Calif., pp. 547–561,
1961.

[21] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, N.J., 1976.

[22] E. Shannon. The mathematical theory of communi-
cation. Bell System Technical J., 27 (3,4): 379–423,
623–656, 1948.

[23] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities, Chapman and Hall, London, 1991.

41


	Introduction
	Monotone Measures and Credal Sets 
	Hartley Measure and Shannon Entropy
	Uncertainty Measures on Belief Functions
	Uncertainty Measures on Credal Sets
	Properties of GH1
	The Hartley Measure on Credal Sets
	Discussion and Conclusion

