
INDEPENDENT NATURAL EXTENSION FOR CHOICE FUNCTIONS

Supplementary Material: Proofs
Proof [Proof of Lemma 8] We will show that (i) KM ✓

T
{KDp : p 2M } and (ii) KM ◆

T
{KDp : p 2M }. For (i), consider

any A in KM , meaning that A \L>0 6= /0 or (8p 2 M )(9 f 2 A)Ep( f )> 0. Both cases imply that A \Dp 6= /0 for every p
in M , whence indeed A 2

T
{KDp : p 2 M }. For (ii), consider any A in

T
{KDp : p 2 M }, meaning that A\Dp 6= /0 for all

p in M , and hence indeed A 2 KM .

Proof [Proof of Proposition 19] We will show that (i) KNn
j=1 D j ✓

Nn
j=1 KD j and (ii) KNn

j=1 D j ◆
Nn

j=1 KD j .
For (i), consider any A in KNn

j=1 D j . Then A \
Nn

j=1 D j 6= /0, so let f 2 A belong to
Nn

j=1 D j. Then f 2 L (X1:n)>0—
in which case A 2

Nn
j=1 KD j by coherence—or f � Âm

k=1 lk fk for some m in N, f1, . . . , fm in
Sn

j=1 A1:n\{ j}!{ j}
and m real coefficients l1:m > 0. But then, for every k in {1, . . . ,m}, the gamble set Ak := { fk} belongs to
Sn

j=1 A1:n\{ j}!{ j}. Let furthermore l f1:m
1:m := l1:m > 0 for the unique—and hence all— f1:m in⇥m

k=1 Ak. This implies
that {Âm

k=1 fk} =
�

Âm
k=1 l f1:m

k fk : f1:m 2⇥m
k=1 Ak

 
belongs to Posi(

Sn
j=1 A1:n\{ j}!{ j}) and since f � Âm

k=1 fk, also
{ f} 2 Posi(

Sn
j=1 A1:n\{ j}!{ j}[L s(X1:n)>0). Since f 2 A, we have that then indeed A 2

Nn
j=1 KD j .

For (ii), consider any A in
Nn

j=1 KD j . Then A ◆ B \L (X1:n)0 for some B in Posi(
Sn

j=1 A1:n\{ j}!{ j}[L s(X1:n)>0),
meaning that B = {Âm

k=1 l f1:m
k fk : f1:m 2⇥n

k=1 Bk} for some m in N, B1, . . . , Bm in
Sn

j=1 A1:n\{ j}!{ j}[L s(X1:n)>0 and,
for every f1:m in⇥m

k=1 Bk, m real coefficients l f1:m
1:m > 0. For any k in {1, . . . ,m} we have that Bk belongs to L s(X1:n)>0—in

which case we call Bk := {gk}—or Bk = IEB0
k for some j in {1, . . . ,n}, E in P /0(X1:n \{ j}) and B0

k in KD j , meaning that
B0

k \D j 6= /0—in which case we let hk belong to B0
k \D j and define gk := IEhk. Then the gamble f := Âm

k=1 l g1:m
k gk belongs

to B, and all of its terms l g1:m
k gk either are equal to 0, or belong to L (X1:m)>0 or to

Sn
j=1 A1:n\{ j}!{ j}. Since not all of

these terms are equal to 0, by Theorem 18 then f 2
Nn

j=1 D j, so that B belongs to KNn
j=1 D j , and therefore indeed so does A.

Proof [Proof of Theorem 20] This proof will consist of five parts: we will subsequently show that (i)
Nn

j=1 Kj is coherent,
(ii) it is represented by

Nn
j=1 D(Kj), (iii) marg`(

Nn
j=1 Kj) = K` for every ` in {1, . . . ,n}, (iv)

Nn
j=1 Kj is epistemically

independent, and (v)
Nn

j=1 Kj is the smallest such set of desirable gamble sets. Then (i), (iii) and (iv) establish that
Nn

j=1 Kj
is an independent product of K1, . . . , Kn, which is by (v) the smallest one. (ii) establishes the last claim about

Nn
j=1 Kj’s

representation.
For (i), to show that

Nn
j=1 Kj is coherent, we will regard A :=

Sn
j=1 A1:n\{ j}!{ j} as an assessment on Q(X1:n). By

Theorem 9 it suffices to show that A ✓ KD for some coherent set of desirable gambles D ✓ L (X1:n)—in other words,
that A is consistent.

To this end, note already using Theorem 7 that D(K1), . . . , D(Kn) all are non-empty since K1, . . . , Kn are coherent.
Consider any D1 in D(K1), . . . , Dn in D(Kn), and let D⇤ :=

Nn
j=1 D j. Then Theorem 18 implies that D⇤ is a coherent set of

desirable gambles on L (X1:n) that is epistemically independent—by which we mean that margOD⇤ = margO(D⇤cEI) for
all disjoint non-empty subsets I and O of {1, . . . ,n} and EI in P /0(XI)—and marginalizes to D1, . . . , Dn. We will show
that A ✓ KD⇤ . To this end, consider any A in A , meaning that there is an index j in {1, . . . ,n} such that A 2 A1:n\{ j}!{ j},
or, in other words, such that A = IEB for some B in Kj and E in P /0(X1:n\{ j}). Since D j belongs to D(Kj) we have that
Kj ✓ KD j , and therefore B 2 KD j = Kmarg jD⇤ . Since Kmarg jD⇤ = marg jKD⇤ by Proposition 15, this means that B 2 KD⇤ . But
D⇤ is an epistemically independent set of desirable gambles, and it therefore satisfies marg j(D⇤cE) = marg jD⇤, or in other
words, f 2 D⇤ , IE f 2 D⇤, for any f in L (X j), and hence also A = IEB 2 KD⇤ . Since the choice of A in A was arbitrary,
this implies that indeed A ✓ KD⇤ , guaranteeing that indeed

Nn
j=1 Kj is coherent.

For (ii), since we have just proved that A is consistent, we know by Theorem 9 that

nO

j=1
Kj =

\�
KD : D 2 D(X1:n) and A ✓ KD

 

=
\�

KD : D 2 D(X1:n) and (8 j 2 {1, . . . ,n})A1:n\{ j}!{ j} ✓ KD
 

=
\�

KD : D 2 D(X1:n) and
�
8 j 2 {1, . . . ,n},B 2 Kj,E 2 P /0(X1:n\{ j})

�
IEB 2 KD

 
=
\�

KD : D 2 D⇤ ,

where we defined D⇤ := {D 2 D(X1:n) : (8 j 2 {1, . . . ,n},B 2 Kj,E 2 P /0(X1:n\{ j}))IEB 2 KD} for the sake of brevity.
This collection D⇤ has two interesting properties: it satisfies

Sn
j=1 A1:n\{ j}!{ j} ✓ KD⇤ for every D⇤ in D⇤, as can be

seen from its definition. It also satisfies for every j in {1, . . . ,n} the inclusion marg jD⇤ ✓ D(Kj)—in other words,
marg jD⇤ 2 D(Kj) for all D⇤ in D⇤. To show this last property, consider any D⇤ in D⇤, j in {1, . . . ,n}, and consider
E := X1:n\{ j} 2 P /0(X1:n\{ j}). That D⇤ belongs to D⇤ implies that B = IEB 2 KD⇤ for every B in Kj, and hence Kj ✓ KD⇤ .
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But Kj is a set of desirable gamble sets on X j, so Kj ✓ marg jKD⇤ = Kmarg jD⇤ , where the equality is due to Proposition 15.
This implies that indeed marg jD⇤ 2 D(Kj).

This part of the proof is established if we show that
T
{KD : D 2 D⇤}=

T
{KD : D 2

Nn
j=1 D(Kj)}. We will first show

that
Nn

j=1 D(Kj)✓ D⇤. To this end, consider any D in
Nn

j=1 D(Kj)—meaning that D =
Nn

j=1 D j for some D1 in D(K1),
. . . , Dn in D(Kn)—and any j in {1, . . . ,n}, B in Kj and E in P /0(X1:n\{ j}). That D j belongs to D(Kj) implies that B 2 KD j ,
and Theorem 18 tells us that marg jD = D j, so B 2 KD . But then f 2 D for some f in B, and since D is an epistemically
independent set of desirable gambles, therefore IE f 2 D, whence IEB 2 KD . This implies that D 2 D⇤, and therefore,
since the choice of D in

Nn
j=1 D(Kj) was arbitrary, indeed

Nn
j=1 D(Kj) ✓ D⇤, which implies that

T
{KD : D 2 D⇤} ✓T

{KD : D 2
Nn

j=1 D(Kj)}.
To establish the equality between these two intersections, it suffices to prove that also the converse set inclusion holds. To

this end, consider any A in
T
{KD : D 2

Nn
j=1 D(Kj)}, meaning that A\

Nn
j=1 D j 6= /0 for all D1 in D(K1), . . . , Dn in D(Kn).

We need to show that then A 2
T
{KD : D 2 D⇤}—or in other words, that A \D⇤ 6= /0 for any D⇤ in D⇤—so consider any

D⇤ in D⇤. We have established earlier that then marg jD⇤ 2 D(Kj) for any j in {1, . . . ,n}, so that
Nn

j=1 marg jD⇤ belongs toNn
j=1 D(Kj) and we therefore have that A \

Nn
j=1 marg jD⇤ 6= /0, or in other words, that A 2 KNn

j=1 marg jD⇤ . But we have
seen in Proposition 19 that KNn

j=1 marg jD⇤ is the smallest element of K that includes
Sn

j=1 A1:n\{ j}!{ j}, and therefore,
since we already have established above that

Sn
j=1 A1:n\{ j}!{ j} ✓ KD⇤ , we have that KNn

j=1 marg jD⇤ ✓ KD⇤ . This implies
that A 2 KD⇤ , whence indeed A \D⇤ 6= /0.

For (iii), consider any ` in {1, . . . ,n}, and we will show that marg`(
Nn

j=1 Kj) = K`. We know from the second part of
this proof, established above, that

Nn
j=1 Kj is represented by

Nn
j=1 D(Kj), and therefore also, using Proposition 15, that

marg`(
Nn

j=1 Kj) is represented by marg`(
Nn

j=1 D(Kj)). Infer the following chain of equalities:

marg`

✓ nO

j=1
D(Kj)

◆
= marg`

✓⇢ nO

j=1
D j : D1 2 D(K1), . . . ,Dn 2 D(Kn)

�◆

=

⇢
marg`

✓ nO

j=1
D j

◆
: D1 2 D(K1), . . . ,Dn 2 D(Kn)

�

= {D` : D1 2 D(K1), . . . ,Dn 2 D(Kn)}= D(K`),

where the first equality follows from the definition of
Nn

j=1 D(Kj), the second one from the definition above Proposition 15
of margO(D) for any collection D of sets of desirable gambles, and the third one from Theorem 18. This means that
marg`(

Nn
j=1 Kj) is represented by D(K`). Theorem 7 then implies that indeed marg`(

Nn
j=1 Kj) = K`.

Finally, for (iv), let K⇤ ✓ Q(X1:n) be the smallest independent product of K1, . . . , Kn. Since K⇤ is epistemically
independent, we have by Equation (4) in particular, for any j in {1, . . . ,n} and E in P /0(X1:n\{ j}), that

marg j(K
⇤cE) = marg jK

⇤ = Kj,

where the first equality holds because K is epistemically independent, and the second one because K⇤ marginalizes to
K1, . . . , Kn. This implies that any B in Kj should belong to K⇤cE, and hence that IEB 2 K⇤. Since this should hold for
any j in {1, . . . ,n}, B in Kj, and E in P /0(X1:n\{ j}), we have that

Sn
j=1 A1:n\{ j}!{ j} ✓ K⇤. Since K⇤ is coherent, also

posi(
Sn

j=1 A1:n\{ j}!{ j}[L s(X1:n)>0)✓ K⇤. But this tells us that
Nn

j=1 Ki ✓ K⇤, establishing that
Nn

j=1 Ki indeed is the
smallest independent product of K1, . . . , Kn.

Proof [Proof of Proposition 21] By Theorem 20
N

`2L1[L2
K` is represented by

N
`2L1[L2

D(K`). Infer using the associativity
of the independent natural extension for sets of desirable gambles that

O

`2L1[L2

D(K`) =

⇢ O

`2L1[L2

D` : (8` 2 L1 [L2)D` 2 D(K`)

�

=

⇢O

`12L1

D`1 ⌦
O

`22L2

D`2 : (8` 2 L1 [L2)D` 2 D(K`)

�

=

⇢O

`12L1

D`1 : (8`1 2 L1)D`1 2 D(K`1)

�
⌦
⇢O

`22L2

D`2 : (8`2 2 L1 [L2)D`2 2 D(K`2)

�

=
O

`12L1

D(K`1)⌦
O

`22L2

D(K`2),
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so that
N

`2L1[L2
K` is represented by the independent natural extension

N
`12L1

D(K`1)⌦
N

`22L2
D(K`2) of two coher-

ent sets of desirable gambles
N

`12L1
D(K`1) and

N
`22L2

D(K`2). Theorem 20 then implies that indeed
N

`2L1[L2
K` =N

`12L1
K`1 ⌦

N
`22L2

K`2 .

Proof [Proof of Proposition 22] Use Theorem 20 to infer that
Nn

j=1 Kj is represented by
Nn

j=1 D(Kj), so
Nn

j=1 Kj =T
{KD : D 2

Nn
j=1 D(Kj)}. Note that, by Theorem 18, any D in

Nn
j=1 D(Kj) satisfies

margOD = margO(DcEI)

for any disjoint non-empty subsets I and O of {1, . . . ,n}, and EI in P /0(XI). Consider any A in Q(XI) and EA ✓P /0(XO),
and infer the following equivalences

A 2
nO

j=1
Kj ,

⇣
8D 2

nO

j=1
D(Kj)

⌘
(9 f 2 A) f 2 D ,

⇣
8D 2

nO

j=1
D(Kj)

⌘
(9 f 2 A)IE f f 2 D

,
⇣
8D 2

nO

j=1
D(Kj)

⌘
EAA \D 6= /0 , EAA 2

nO

j=1
Kj,

which establishes that
Nn

j=1 Kj satisfies the stronger requirement of Equation (9).
To show that then, as a consequence, any independent product of K1, . . . , Kn includes A ⇤

1:n\{ j}!{ j} :=
Sn

j=1
�

EA ·
A : A 2 Kj and EA ✓ P /0(X1:n\{ j})

 
, it suffices to show that the smallest independent product

Nn
j=1 Kj of K1, . . . , Kn

includes A ⇤
1:n\{ j}!{ j}. To this end, consider any j in {1, . . . ,n} and any A in Kj. Then since

Nn
j=1 Kj marginalizes to Kj,

we have A 2
Nn

j=1 Kj. By Equation (9) [use O := { j} and I := {1, . . . ,n} \ { j}], then also EA ·A 2
Nn

j=1 Kj for any
EA ✓ P /0(X1:n\{ j}). Since the choice of j in {1, . . . ,n} was arbitrary, this implies that indeed A ⇤

1:n\{ j}!{ j} ✓
Nn

j=1 Kj.

Proof [Proof of Lemma 24] To show that D is coherent, it suffices by Theorem 6 to show that L0 \ posi(I{F}D1 [
I{U}D2) = /0. To this end, consider any f in posi(I{F}D1 [ I{U}D2), meaning that f = Âm

k=1 lk fk for some m in N, real
coefficients l1:m > 0, and gambles f1, . . . , fm in I{F}D1 [ I{U}D2. For every k in {1, . . . ,m}, if fk belongs to I{F}D1
then fk(U,H) = fk(U,T ) = 0 and fk(F,H)+ fk(F,T )> 0, and if fk belongs to I{U}D2 then fk(F,H) = fk(F,T ) = 0 and
fk(U,H)+ fk(U,T )> 0, or fk(U,H)+ fk(U,T ) = 0 but then fk(U,H)> fk(U,T ). This implies that f(·,H)+ f(·,T )> 0
whence indeed f /2 L0.

To show that it is no independent product, let us show that margY D ⇢ margY (Dc{U}), so that learning that the coin is
unfair, results in a bigger Y -marginal than not learning anything at all. More specifically, we will show that margY D = D1
and margY (Dc{U}) = D2.

To show that margY D ✓ D1, consider any f in margY D. Then f 2 L (Y ) and f 2 D, meaning that f > 0—in which
case f 2 D1 by its coherence—or f � Âm

k=1 lk fk for some m in N, real coefficients l1:m > 0, and gambles f1, . . . , fm
in I{F}D1 [ I{U}D2. Since f belongs to L (Y ), we have that f � 1

2 Âx2X Âm
k=1 lk fk(x,·), and therefore f(H)+ f(T )�

1
2 Âx2X Âm

k=1 lk fk(x,H)+ 1
2 Âx2X Âm

k=1 lk fk(x,T )> 0, so that indeed f 2 D1.
That also margY D ◆ D1 follows once we realise that D1 ✓ D2, whence D ◆ posi(I{F}D1 [ I{U}D1 [L (X ⇥Y )>0) =

posi(D1[L (X ⇥Y )>0), which is the cylindrical extension12 of D1, a coherent set of desirable gambles that marginalizes
to D1.

To show now that conditioning on {U} changes the marginal margY (Dc{U}) information to D2, let us show first that
margY (Dc{U}) ✓ D2. This follows once we realise that D1 ✓ D2 and therefore D ✓ posi(I{F}D2 [ I{U}D2 [L (X ⇥
Y )>0) = posi(D2 [L (X ⇥Y )>0), which is the cylindrical extension of D2, a coherent set of desirable gambles that
marginalizes to D2. This implies that margY D ✓ margY posi(D2 [L (X ⇥Y )>0) = D2.

To show, conversely, that margY (Dc{U})◆ D2, consider any f in D2. This implies that I{U} f 2 I{U}D2 ✓ D. By the
conditioning rule for sets of desirable gambles

DcE := { f 2 L (E) : IE f 2 D},

then f 2 Dc{U}, and since f belongs to L (Y ), indeed f 2 margY (Dc{U}).

Proof [Proof of Lemma 25] Since Y is a binary variable, it suffices to check that

{I{U} f + e,�I{F} f + e} 2 KD

12. See De Cooman and Miranda [11, Proposition 7].
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for all f in L (X ) and e 2 R>0, as discussed right after Definition 23. So consider any f in L (X ) and e 2 R>0; we need
to show that then I{F} f + e or �I{U} f + e belongs to D. We will proceed by considering two exhaustive cases: (i) f 2 D
and (ii) f /2 D.

For (i) f 2 D implies that I{U} f = I{U} f(U,·) 2 Dc{U}. But in the proof of Lemma 24 we have established that
margY Dc{U}= D2, and therefore f(U,·)2 D2, whence I{U} f = I{U} f(U,·)2 I{U}D2 ✓ D, and therefore indeed I{U} f +
e 2 D.

For (ii) f /2 D implies that I{F} f = I{F} f(F,·) /2 Dc{F}. By a completely similar argument as in the proof of Lemma 24,
we can establish that margY Dc{F} = D1, so that I{F} f(F,·) /2 D1. But this means that I{F} f(F,H)+ I{F} f(F,T )  0,
whence �I{F} f(F,H)+ e � I{F} f(F,T )+ e > 0 and therefore indeed �I{F} f + e =�I{F} f(F,·)+ e 2 D1 ✓ D.
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