Supplementary Material: Proofs

Proof [Proof of Lemma 8] We will show that (i) $K_{\mathcal{M}} \subseteq \bigcap \{K_{D_p} : p \in \mathcal{M}\}$ and (ii) $K_{\mathcal{M}} \supseteq \bigcap \{K_{D_p} : p \in \mathcal{M}\}$. For (i), consider any *A* in $K_{\mathcal{M}}$, meaning that $A \cap \mathcal{L}_{>0} \neq \emptyset$ or $(\forall p \in \mathcal{M})(\exists f \in A)E_p(f) > 0$. Both cases imply that $A \cap D_p \neq \emptyset$ for every *p* in \mathcal{M} , whence indeed $A \in \bigcap \{K_{D_p} : p \in \mathcal{M}\}$. For (ii), consider any *A* in $\bigcap \{K_{D_p} : p \in \mathcal{M}\}$, meaning that $A \cap D_p \neq \emptyset$ for all *p* in \mathcal{M} , and hence indeed $A \in K_{\mathcal{M}}$.

Proof [Proof of Proposition 19] We will show that (i) $K_{\bigotimes_{j=1}^{n}D_{j}} \subseteq \bigotimes_{j=1}^{n} K_{D_{j}}$ and (ii) $K_{\bigotimes_{j=1}^{n}D_{j}} \supseteq \bigotimes_{j=1}^{n} K_{D_{j}}$.

For (i), consider any *A* in $K_{\bigotimes_{j=1}^{n}D_{j}}$. Then $A \cap \bigotimes_{j=1}^{n}D_{j} \neq \emptyset$, so let $f \in A$ belong to $\bigotimes_{j=1}^{n}D_{j}$. Then $f \in \mathscr{L}(\mathscr{X}_{1:n})_{>0}$ in which case $A \in \bigotimes_{j=1}^{n}K_{D_{j}}$ by coherence—or $f \geq \sum_{k=1}^{m}\lambda_{k}f_{k}$ for some *m* in \mathbb{N} , f_{1}, \ldots, f_{m} in $\bigcup_{j=1}^{n}A_{1:n\setminus\{j\}\to\{j\}}$ and *m* real coefficients $\lambda_{1:m} > 0$. But then, for every *k* in $\{1,\ldots,m\}$, the gamble set $A_{k} \coloneqq \{f_{k}\}$ belongs to $\bigcup_{j=1}^{n}\mathscr{A}_{1:n\setminus\{j\}\to\{j\}}$. Let furthermore $\lambda_{1:m}^{f_{1:m}} \coloneqq \lambda_{1:m} > 0$ for the unique—and hence all— $f_{1:m}$ in $\bigotimes_{k=1}^{m}A_{k}$. This implies that $\{\sum_{k=1}^{m}f_{k}\} = \{\sum_{k=1}^{m}\lambda_{k}^{f_{1:m}}f_{k}\colon f_{1:m} \in \bigotimes_{k=1}^{m}A_{k}\}$ belongs to $\operatorname{Posi}(\bigcup_{j=1}^{n}\mathscr{A}_{1:n\setminus\{j\}\to\{j\}})$ and since $f \geq \sum_{k=1}^{m}f_{k}$, also $\{f\} \in \operatorname{Posi}(\bigcup_{j=1}^{n}\mathscr{A}_{1:n\setminus\{j\}\to\{j\}} \cup \mathscr{E}^{s}(\mathscr{X}_{1:n})_{>0})$. Since $f \in A$, we have that then indeed $A \in \bigotimes_{j=1}^{n}K_{D_{j}}$.

For (ii), consider any A in $\bigotimes_{j=1}^{n} K_{D_j}$. Then $A \supseteq B \setminus \mathscr{L}(\mathscr{X}_{1:n})_{\leq 0}$ for some B in $\operatorname{Posi}(\bigcup_{j=1}^{n} \mathscr{A}_{1:n \setminus \{j\} \to \{j\}} \cup \mathscr{L}^{s}(\mathscr{X}_{1:n})_{>0})$, meaning that $B = \{\sum_{k=1}^{m} \lambda_k^{f_{1:m}} f_k : f_{1:m} \in \bigotimes_{k=1}^{n} B_k\}$ for some m in $\mathbb{N}, B_1, \ldots, B_m$ in $\bigcup_{j=1}^{n} \mathscr{A}_{1:n \setminus \{j\} \to \{j\}} \cup \mathscr{L}^{s}(\mathscr{X}_{1:n})_{>0}$ and, for every $f_{1:m}$ in $\bigotimes_{k=1}^{m} B_k$, m real coefficients $\lambda_{1:m}^{f_{1:m}} > 0$. For any k in $\{1, \ldots, m\}$ we have that B_k belongs to $\mathscr{L}^{s}(\mathscr{X}_{1:n})_{>0}$ —in which case we call $B_k := \{g_k\}$ —or $B_k = \mathbb{I}_E B'_k$ for some j in $\{1, \ldots, n\}$, E in $\mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n} \setminus \{j\})$ and B'_k in K_{D_j} , meaning that $B'_k \cap D_j \neq \emptyset$ —in which case we let h_k belong to $B'_k \cap D_j$ and define $g_k := \mathbb{I}_E h_k$. Then the gamble $f := \sum_{k=1}^{m} \lambda_k^{g_{1:m}} g_k$ belongs to B, and all of its terms $\lambda_k^{g_{1:m}} g_k$ either are equal to 0, or belong to $\mathscr{L}(\mathscr{X}_{1:m})_{>0}$ or to $\bigcup_{j=1}^{n} A_{1:n \setminus \{j\} \to \{j\}}$. Since not all of these terms are equal to 0, by Theorem 18 then $f \in \bigotimes_{j=1}^{n} D_j$, so that B belongs to $K_{\bigotimes_{j=1}^{n} D_j}$, and therefore indeed so does A.

Proof [Proof of Theorem 20] This proof will consist of five parts: we will subsequently show that (i) $\bigotimes_{j=1}^{n} K_j$ is coherent, (ii) it is represented by $\bigotimes_{j=1}^{n} \mathbf{D}(K_j)$, (iii) $\max_{\ell} (\bigotimes_{j=1}^{n} K_j) = K_{\ell}$ for every ℓ in $\{1, \ldots, n\}$, (iv) $\bigotimes_{j=1}^{n} K_j$ is epistemically independent, and (v) $\bigotimes_{j=1}^{n} K_j$ is the smallest such set of desirable gamble sets. Then (i), (iii) and (iv) establish that $\bigotimes_{j=1}^{n} K_j$ is an independent product of K_1, \ldots, K_n , which is by (v) the smallest one. (ii) establishes the last claim about $\bigotimes_{j=1}^{n} K_j$'s representation.

For (i), to show that $\bigotimes_{j=1}^{n} K_j$ is coherent, we will regard $\mathscr{A} := \bigcup_{j=1}^{n} \mathscr{A}_{1:n \setminus \{j\} \to \{j\}}$ as an assessment on $\mathscr{Q}(\mathscr{X}_{1:n})$. By Theorem 9 it suffices to show that $\mathscr{A} \subseteq K_D$ for some coherent set of desirable gambles $D \subseteq \mathscr{L}(\mathscr{X}_{1:n})$ —in other words, that \mathscr{A} is consistent.

To this end, note already using Theorem 7 that $\mathbf{D}(K_1), \ldots, \mathbf{D}(K_n)$ all are non-empty since K_1, \ldots, K_n are coherent. Consider any D_1 in $\mathbf{D}(K_1), \ldots, D_n$ in $\mathbf{D}(K_n)$, and let $D^* := \bigotimes_{j=1}^n D_j$. Then Theorem 18 implies that D^* is a coherent set of desirable gambles on $\mathscr{L}(\mathscr{X}_{1:n})$ that is epistemically independent—by which we mean that $\operatorname{marg}_O D^* = \operatorname{marg}_O(D^* | E_I)$ for all disjoint non-empty subsets I and O of $\{1, \ldots, n\}$ and E_I in $\mathscr{P}_{\overline{0}}(\mathscr{X}_I)$ —and marginalizes to D_1, \ldots, D_n . We will show that $\mathscr{A} \subseteq K_{D^*}$. To this end, consider any A in \mathscr{A} , meaning that there is an index j in $\{1, \ldots, n\}$ such that $A \in \mathscr{A}_{1:n\setminus\{j\}\to\{j\}}$, or, in other words, such that $A = \mathbb{I}_E B$ for some B in K_j and E in $\mathscr{P}_{\overline{0}}(\mathscr{X}_{1:n\setminus\{j\}})$. Since D_j belongs to $\mathbf{D}(K_j)$ we have that $K_j \subseteq K_{D_j}$, and therefore $B \in K_{D_j} = K_{\operatorname{marg}_j D^*}$. Since $K_{\operatorname{marg}_j D^*} = \operatorname{marg}_j K_{D^*}$ by Proposition 15, this means that $B \in K_{D^*}$. But D^* is an epistemically independent set of desirable gambles, and it therefore satisfies $\operatorname{marg}_j(D^* | E) = \operatorname{marg}_j D^*$, or in other words, $f \in D^* \Leftrightarrow \mathbb{I}_E f \in D^*$, for any f in $\mathscr{L}(\mathscr{X}_j)$, and hence also $A = \mathbb{I}_E B \in K_{D^*}$. Since the choice of A in \mathscr{A} was arbitrary, this implies that indeed $\mathscr{A} \subseteq K_{D^*}$, guaranteeing that indeed $\bigotimes_{j=1}^n K_j$ is coherent.

For (ii), since we have just proved that \mathscr{A} is consistent, we know by Theorem 9 that

$$\bigotimes_{j=1}^{n} K_{j} = \bigcap \{ K_{D} \colon D \in \mathbf{D}(\mathscr{X}_{1:n}) \text{ and } \mathscr{A} \subseteq K_{D} \}$$
$$= \bigcap \{ K_{D} \colon D \in \mathbf{D}(\mathscr{X}_{1:n}) \text{ and } (\forall j \in \{1, \dots, n\}) \mathscr{A}_{1:n \setminus \{j\} \to \{j\}} \subseteq K_{D} \}$$
$$= \bigcap \{ K_{D} \colon D \in \mathbf{D}(\mathscr{X}_{1:n}) \text{ and } (\forall j \in \{1, \dots, n\}, B \in K_{j}, E \in \mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n \setminus \{j\}})) \mathbb{I}_{E}B \in K_{D} \} = \bigcap \{ K_{D} \colon D \in \mathbf{D}^{*} \},$$

where we defined $\mathbf{D}^* := \{D \in \mathbf{D}(\mathscr{X}_{1:n}) : (\forall j \in \{1, ..., n\}, B \in K_j, E \in \mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n \setminus \{j\}})) \mathbb{I}_E B \in K_D\}$ for the sake of brevity. This collection \mathbf{D}^* has two interesting properties: it satisfies $\bigcup_{j=1}^n \mathscr{A}_{1:n \setminus \{j\}} \subseteq K_{D^*}$ for every D^* in \mathbf{D}^* , as can be seen from its definition. It also satisfies for every j in $\{1, ..., n\}$ the inclusion marg_j $\mathbf{D}^* \subseteq \mathbf{D}(K_j)$ —in other words, marg_j $\mathbf{D}^* \in \mathbf{D}(K_j)$ for all D^* in \mathbf{D}^* . To show this last property, consider any D^* in \mathbf{D}^* , j in $\{1, ..., n\}$, and consider $E := \mathscr{X}_{1:n \setminus \{j\}} \in \mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n \setminus \{j\}})$. That D^* belongs to \mathbf{D}^* implies that $B = \mathbb{I}_E B \in K_{D^*}$ for every B in K_j , and hence $K_j \subseteq K_{D^*}$. But K_j is a set of desirable gamble sets on \mathscr{X}_j , so $K_j \subseteq \text{marg}_j K_{D^*} = K_{\text{marg}_j D^*}$, where the equality is due to Proposition 15. This implies that indeed $\text{marg}_j D^* \in \mathbf{D}(K_j)$.

This part of the proof is established if we show that $\bigcap \{K_D : D \in \mathbf{D}^*\} = \bigcap \{K_D : D \in \bigotimes_{j=1}^n \mathbf{D}(K_j)\}$. We will first show that $\bigotimes_{j=1}^n \mathbf{D}(K_j) \subseteq \mathbf{D}^*$. To this end, consider any D in $\bigotimes_{j=1}^n \mathbf{D}(K_j)$ —meaning that $D = \bigotimes_{j=1}^n D_j$ for some D_1 in $\mathbf{D}(K_1)$, ..., D_n in $\mathbf{D}(K_n)$ —and any j in $\{1, \ldots, n\}$, B in K_j and E in $\mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n\setminus\{j\}})$. That D_j belongs to $\mathbf{D}(K_j)$ implies that $B \in K_{D_j}$, and Theorem 18 tells us that marg_j $D = D_j$, so $B \in K_D$. But then $f \in D$ for some f in B, and since D is an epistemically independent set of desirable gambles, therefore $\mathbb{I}_E f \in D$, whence $\mathbb{I}_E B \in K_D$. This implies that $D \in \mathbf{D}^*$, and therefore, since the choice of D in $\bigotimes_{j=1}^n \mathbf{D}(K_j)$ was arbitrary, indeed $\bigotimes_{j=1}^n \mathbf{D}(K_j) \subseteq \mathbf{D}^*$, which implies that $\bigcap \{K_D : D \in \mathbf{D}^*\} \subseteq \bigcap \{K_D : D \in \bigotimes_{j=1}^n \mathbf{D}(K_j)\}$.

To establish the equality between these two intersections, it suffices to prove that also the converse set inclusion holds. To this end, consider any A in $\bigcap \{K_D : D \in \bigotimes_{j=1}^n \mathbf{D}(K_j)\}$, meaning that $A \cap \bigotimes_{j=1}^n D_j \neq \emptyset$ for all D_1 in $\mathbf{D}(K_1), \ldots, D_n$ in $\mathbf{D}(K_n)$. We need to show that then $A \in \bigcap \{K_D : D \in \mathbf{D}^*\}$ —or in other words, that $A \cap D^* \neq \emptyset$ for any D^* in \mathbf{D}^* —so consider any D^* in \mathbf{D}^* . We have established earlier that then marg_j $D^* \in \mathbf{D}(K_j)$ for any j in $\{1, \ldots, n\}$, so that $\bigotimes_{j=1}^n \operatorname{marg}_j D^*$ belongs to $\bigotimes_{j=1}^n \mathbf{D}(K_j)$ and we therefore have that $A \cap \bigotimes_{j=1}^n \operatorname{marg}_j D^* \neq \emptyset$, or in other words, that $A \in K_{\bigotimes_{j=1}^n \operatorname{marg}_j D^*}$. But we have seen in Proposition 19 that $K_{\bigotimes_{j=1}^n \operatorname{marg}_j D^*}$ is the smallest element of $\overline{\mathscr{K}}$ that includes $\bigcup_{j=1}^n \mathscr{A}_{1:n\setminus\{j\}\to\{j\}}$, and therefore, since we already have established above that $\bigcup_{j=1}^n \mathscr{A}_{1:n\setminus\{j\}\to\{j\}} \subseteq K_{D^*}$, we have that $K_{\bigotimes_{j=1}^n \operatorname{marg}_j D^*} \subseteq K_{D^*}$. This implies that $A \in K_{D^*}$, whence indeed $A \cap D^* \neq \emptyset$.

For (iii), consider any ℓ in $\{1, \ldots, n\}$, and we will show that $\max_{\ell} (\bigotimes_{j=1}^{n} K_j) = K_{\ell}$. We know from the second part of this proof, established above, that $\bigotimes_{j=1}^{n} K_j$ is represented by $\bigotimes_{j=1}^{n} \mathbf{D}(K_j)$, and therefore also, using Proposition 15, that $\max_{\ell} (\bigotimes_{j=1}^{n} K_j)$ is represented by $\max_{\ell} (\bigotimes_{j=1}^{n} \mathbf{D}(K_j))$. Infer the following chain of equalities:

$$\operatorname{marg}_{\ell}\left(\bigotimes_{j=1}^{n} \mathbf{D}(K_{j})\right) = \operatorname{marg}_{\ell}\left(\left\{\bigotimes_{j=1}^{n} D_{j} \colon D_{1} \in \mathbf{D}(K_{1}), \dots, D_{n} \in \mathbf{D}(K_{n})\right\}\right)$$
$$= \left\{\operatorname{marg}_{\ell}\left(\bigotimes_{j=1}^{n} D_{j}\right) \colon D_{1} \in \mathbf{D}(K_{1}), \dots, D_{n} \in \mathbf{D}(K_{n})\right\}$$
$$= \left\{D_{\ell} \colon D_{1} \in \mathbf{D}(K_{1}), \dots, D_{n} \in \mathbf{D}(K_{n})\right\} = \mathbf{D}(K_{\ell}),$$

where the first equality follows from the definition of $\bigotimes_{j=1}^{n} \mathbf{D}(K_j)$, the second one from the definition above Proposition 15 of marg_O(**D**) for any collection **D** of sets of desirable gambles, and the third one from Theorem 18. This means that marg_{\ell}($\bigotimes_{i=1}^{n} K_j$) is represented by $\mathbf{D}(K_\ell)$. Theorem 7 then implies that indeed marg_{\ell}($\bigotimes_{i=1}^{n} K_j$) = K_ℓ .

Finally, for (iv), let $K^* \subseteq \mathscr{Q}(\mathscr{X}_{1:n})$ be the smallest independent product of K_1, \ldots, K_n . Since K^* is epistemically independent, we have by Equation (4) in particular, for any j in $\{1, \ldots, n\}$ and E in $\mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n\setminus\{j\}})$, that

$$\operatorname{marg}_{i}(K^{*} \rfloor E) = \operatorname{marg}_{i} K^{*} = K_{j},$$

where the first equality holds because *K* is epistemically independent, and the second one because K^* marginalizes to K_1, \ldots, K_n . This implies that any *B* in K_j should belong to $K^* \rfloor E$, and hence that $\mathbb{I}_E B \in K^*$. Since this should hold for any *j* in $\{1, \ldots, n\}$, *B* in K_j , and *E* in $\mathscr{P}_{\overline{0}}(\mathscr{X}_{1:n\setminus\{j\}})$, we have that $\bigcup_{j=1}^n \mathscr{A}_{1:n\setminus\{j\}} \subseteq K^*$. Since K^* is coherent, also $posi(\bigcup_{j=1}^n \mathscr{A}_{1:n\setminus\{j\}} \to \{j\} \cup \mathscr{L}^s(\mathscr{X}_{1:n})_{>0}) \subseteq K^*$. But this tells us that $\bigotimes_{j=1}^n K_i \subseteq K^*$, establishing that $\bigotimes_{j=1}^n K_i$ indeed is the smallest independent product of K_1, \ldots, K_n .

Proof [Proof of Proposition 21] By Theorem 20 $\bigotimes_{\ell \in L_1 \cup L_2} K_\ell$ is represented by $\bigotimes_{\ell \in L_1 \cup L_2} \mathbf{D}(K_\ell)$. Infer using the associativity of the independent natural extension for sets of desirable gambles that

$$\begin{split} \bigotimes_{\ell \in L_1 \cup L_2} \mathbf{D}(K_\ell) &= \left\{ \bigotimes_{\ell \in L_1 \cup L_2} D_\ell \colon (\forall \ell \in L_1 \cup L_2) D_\ell \in \mathbf{D}(K_\ell) \right\} \\ &= \left\{ \bigotimes_{\ell_1 \in L_1} D_{\ell_1} \otimes \bigotimes_{\ell_2 \in L_2} D_{\ell_2} \colon (\forall \ell \in L_1 \cup L_2) D_\ell \in \mathbf{D}(K_\ell) \right\} \\ &= \left\{ \bigotimes_{\ell_1 \in L_1} D_{\ell_1} \colon (\forall \ell_1 \in L_1) D_{\ell_1} \in \mathbf{D}(K_{\ell_1}) \right\} \otimes \left\{ \bigotimes_{\ell_2 \in L_2} D_{\ell_2} \colon (\forall \ell_2 \in L_1 \cup L_2) D_{\ell_2} \in \mathbf{D}(K_{\ell_2}) \right\} \\ &= \bigotimes_{\ell_1 \in L_1} \mathbf{D}(K_{\ell_1}) \otimes \bigotimes_{\ell_2 \in L_2} \mathbf{D}(K_{\ell_2}), \end{split}$$

so that $\bigotimes_{\ell \in L_1 \cup L_2} K_\ell$ is represented by the independent natural extension $\bigotimes_{\ell_1 \in L_1} \mathbf{D}(K_{\ell_1}) \otimes \bigotimes_{\ell_2 \in L_2} \mathbf{D}(K_{\ell_2})$ of two coherent sets of desirable gambles $\bigotimes_{\ell_1 \in L_1} \mathbf{D}(K_{\ell_1})$ and $\bigotimes_{\ell_2 \in L_2} \mathbf{D}(K_{\ell_2})$. Theorem 20 then implies that indeed $\bigotimes_{\ell \in L_1 \cup L_2} K_\ell = \bigotimes_{\ell_1 \in L_1} K_{\ell_1} \otimes \bigotimes_{\ell_2 \in L_2} K_{\ell_2}$.

Proof [Proof of Proposition 22] Use Theorem 20 to infer that $\bigotimes_{j=1}^{n} K_j$ is represented by $\bigotimes_{j=1}^{n} \mathbf{D}(K_j)$, so $\bigotimes_{j=1}^{n} K_j = \bigcap\{K_D : D \in \bigotimes_{j=1}^{n} \mathbf{D}(K_j)\}$. Note that, by Theorem 18, any *D* in $\bigotimes_{j=1}^{n} \mathbf{D}(K_j)$ satisfies

$$\operatorname{marg}_O D = \operatorname{marg}_O(D \rfloor E_I)$$

for any disjoint non-empty subsets *I* and *O* of $\{1, ..., n\}$, and E_I in $\mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_I)$. Consider any *A* in $\mathscr{Q}(\mathscr{X}_I)$ and $E_A \subseteq \mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_O)$, and infer the following equivalences

$$A \in \bigotimes_{j=1}^{n} K_{j} \Leftrightarrow \left(\forall D \in \bigotimes_{j=1}^{n} \mathbf{D}(K_{j}) \right) (\exists f \in A) f \in D \Leftrightarrow \left(\forall D \in \bigotimes_{j=1}^{n} \mathbf{D}(K_{j}) \right) (\exists f \in A) \mathbb{I}_{E_{f}} f \in D$$
$$\Leftrightarrow \left(\forall D \in \bigotimes_{i=1}^{n} \mathbf{D}(K_{j}) \right) E_{A} A \cap D \neq \emptyset \Leftrightarrow E_{A} A \in \bigotimes_{i=1}^{n} K_{j},$$

which establishes that $\bigotimes_{i=1}^{n} K_{j}$ satisfies the stronger requirement of Equation (9).

To show that then, as a consequence, any independent product of K_1, \ldots, K_n includes $\mathscr{A}_{1:n\setminus\{j\}\to\{j\}}^* := \bigcup_{j=1}^n \{E_A \cdot A : A \in K_j \text{ and } E_A \subseteq \mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n\setminus\{j\}})\}$, it suffices to show that the smallest independent product $\bigotimes_{j=1}^n K_j$ of K_1, \ldots, K_n includes $\mathscr{A}_{1:n\setminus\{j\}\to\{j\}}^*$. To this end, consider any j in $\{1,\ldots,n\}$ and any A in K_j . Then since $\bigotimes_{j=1}^n K_j$ marginalizes to K_j , we have $A \in \bigotimes_{j=1}^n K_j$. By Equation (9) [use $O := \{j\}$ and $I := \{1,\ldots,n\} \setminus \{j\}$], then also $E_A \cdot A \in \bigotimes_{j=1}^n K_j$ for any $E_A \subseteq \mathscr{P}_{\overline{\emptyset}}(\mathscr{X}_{1:n\setminus\{j\}})$. Since the choice of j in $\{1,\ldots,n\}$ was arbitrary, this implies that indeed $\mathscr{A}_{1:n\setminus\{j\}\to\{j\}}^* \subseteq \bigotimes_{j=1}^n K_j$.

Proof [Proof of Lemma 24] To show that *D* is coherent, it suffices by Theorem 6 to show that $\mathscr{L}_{\leq 0} \cap \text{posi}(\mathbb{I}_{\{F\}}D_1 \cup \mathbb{I}_{\{U\}}D_2) = \emptyset$. To this end, consider any *f* in $\text{posi}(\mathbb{I}_{\{F\}}D_1 \cup \mathbb{I}_{\{U\}}D_2)$, meaning that $f = \sum_{k=1}^m \lambda_k f_k$ for some *m* in \mathbb{N} , real coefficients $\lambda_{1:m} > 0$, and gambles f_1, \ldots, f_m in $\mathbb{I}_{\{F\}}D_1 \cup \mathbb{I}_{\{U\}}D_2$. For every *k* in $\{1, \ldots, m\}$, if f_k belongs to $\mathbb{I}_{\{F\}}D_1$ then $f_k(U,H) = f_k(U,T) = 0$ and $f_k(F,H) + f_k(F,T) > 0$, and if f_k belongs to $\mathbb{I}_{\{U\}}D_2$ then $f_k(F,H) = f_k(F,T) = 0$ and $f_k(U,H) + f_k(U,T) > 0$, or $f_k(U,H) + f_k(U,T) = 0$ but then $f_k(U,H) > f_k(U,T)$. This implies that $f(\bullet, H) + f(\bullet, T) > 0$ whence indeed $f \notin \mathscr{L}_{\leq 0}$.

To show that it is no independent product, let us show that $\operatorname{marg}_Y D \subset \operatorname{marg}_Y (D \rfloor \{U\})$, so that learning that the coin is unfair, results in a bigger *Y*-marginal than not learning anything at all. More specifically, we will show that $\operatorname{marg}_Y D = D_1$ and $\operatorname{marg}_Y (D \rfloor \{U\}) = D_2$.

To show that $\operatorname{marg}_{Y} D \subseteq D_{1}$, consider any f in $\operatorname{marg}_{Y} D$. Then $f \in \mathscr{L}(\mathscr{Y})$ and $f \in D$, meaning that f > 0—in which case $f \in D_{1}$ by its coherence—or $f \geq \sum_{k=1}^{m} \lambda_{k} f_{k}$ for some m in \mathbb{N} , real coefficients $\lambda_{1:m} > 0$, and gambles f_{1}, \ldots, f_{m} in $\mathbb{I}_{\{F\}} D_{1} \cup \mathbb{I}_{\{U\}} D_{2}$. Since f belongs to $\mathscr{L}(\mathscr{Y})$, we have that $f \geq \frac{1}{2} \sum_{x \in \mathscr{X}} \sum_{k=1}^{m} \lambda_{k} f_{k}(x, \cdot)$, and therefore $f(H) + f(T) \geq \frac{1}{2} \sum_{x \in \mathscr{X}} \sum_{k=1}^{m} \lambda_{k} f_{k}(x, H) + \frac{1}{2} \sum_{x \in \mathscr{X}} \sum_{k=1}^{m} \lambda_{k} f_{k}(x, T) > 0$, so that indeed $f \in D_{1}$.

That also $\operatorname{marg}_Y D \supseteq D_1$ follows once we realise that $D_1 \subseteq D_2$, whence $D \supseteq \operatorname{posi}(\mathbb{I}_{\{F\}} D_1 \cup \mathbb{I}_{\{U\}} D_1 \cup \mathscr{L}(\mathscr{X} \times \mathscr{Y})_{>0}) = \operatorname{posi}(D_1 \cup \mathscr{L}(\mathscr{X} \times \mathscr{Y})_{>0})$, which is the *cylindrical extension*¹² of D_1 , a coherent set of desirable gambles that marginalizes to D_1 .

To show now that conditioning on $\{U\}$ changes the marginal $\operatorname{marg}_Y(D \mid \{U\})$ information to D_2 , let us show first that $\operatorname{marg}_Y(D \mid \{U\}) \subseteq D_2$. This follows once we realise that $D_1 \subseteq D_2$ and therefore $D \subseteq \operatorname{posi}(\mathbb{I}_{\{F\}}D_2 \cup \mathbb{I}_{\{U\}}D_2 \cup \mathscr{L}(\mathscr{X} \times \mathscr{Y})_{>0}) = \operatorname{posi}(D_2 \cup \mathscr{L}(\mathscr{X} \times \mathscr{Y})_{>0})$, which is the cylindrical extension of D_2 , a coherent set of desirable gambles that $\operatorname{marginalizes}$ to D_2 . This implies that $\operatorname{marg}_Y D \subseteq \operatorname{marg}_Y \operatorname{posi}(D_2 \cup \mathscr{L}(\mathscr{X} \times \mathscr{Y})_{>0}) = D_2$.

To show, conversely, that $\operatorname{marg}_Y(D \mid \{U\}) \supseteq D_2$, consider any f in D_2 . This implies that $\mathbb{I}_{\{U\}} f \in \mathbb{I}_{\{U\}} D_2 \subseteq D$. By the conditioning rule for sets of desirable gambles

$$D \rfloor E \coloneqq \{ f \in \mathscr{L}(E) \colon \mathbb{I}_E f \in D \},\$$

then $f \in D \mid \{U\}$, and since f belongs to $\mathscr{L}(\mathscr{Y})$, indeed $f \in \operatorname{marg}_{Y}(D \mid \{U\})$.

Proof [Proof of Lemma 25] Since Y is a binary variable, it suffices to check that

$$\{\mathbb{I}_{\{U\}}f+\varepsilon,-\mathbb{I}_{\{F\}}f+\varepsilon\}\in K_D$$

^{12.} See De Cooman and Miranda [11, Proposition 7].

for all f in $\mathscr{L}(\mathscr{X})$ and $\varepsilon \in \mathbb{R}_{>0}$, as discussed right after Definition 23. So consider any f in $\mathscr{L}(\mathscr{X})$ and $\varepsilon \in \mathbb{R}_{>0}$; we need to show that then $\mathbb{I}_{\{F\}}f + \varepsilon$ or $-\mathbb{I}_{\{U\}}f + \varepsilon$ belongs to D. We will proceed by considering two exhaustive cases: (i) $f \in D$ and (ii) $f \notin D$.

For (i) $f \in D$ implies that $\mathbb{I}_{\{U\}}f = \mathbb{I}_{\{U\}}f(U, \bullet) \in D \ \{U\}$. But in the proof of Lemma 24 we have established that $\operatorname{marg}_{Y}D \ \{U\} = D_2$, and therefore $f(U, \bullet) \in D_2$, whence $\mathbb{I}_{\{U\}}f = \mathbb{I}_{\{U\}}f(U, \bullet) \in \mathbb{I}_{\{U\}}D_2 \subseteq D$, and therefore indeed $\mathbb{I}_{\{U\}}f + \varepsilon \in D$.

For (ii) $f \notin D$ implies that $\mathbb{I}_{\{F\}} f = \mathbb{I}_{\{F\}} f(F, \bullet) \notin D \ \{F\}$. By a completely similar argument as in the proof of Lemma 24, we can establish that $\operatorname{marg}_{Y} D \ \{F\} = D_1$, so that $\mathbb{I}_{\{F\}} f(F, \bullet) \notin D_1$. But this means that $\mathbb{I}_{\{F\}} f(F,H) + \mathbb{I}_{\{F\}} f(F,T) \le 0$, whence $-\mathbb{I}_{\{F\}} f(F,H) + \varepsilon - \mathbb{I}_{\{F\}} f(F,T) + \varepsilon > 0$ and therefore indeed $-\mathbb{I}_{\{F\}} f(F, \bullet) + \varepsilon = -\mathbb{I}_{\{F\}} f(F, \bullet) + \varepsilon \in D_1 \subseteq D$.