CREPO: An Open Repository to Benchmark Credal Network Algorithms (Supplementary Material)

Rafael Cabañas

Alessandro Antonucci

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Switzerland

RCABANAS@IDSIA.CH ALESSANDRO@IDSIA.CH

Appendix A. Supplementary Material

Consider a closed and convex set *C* in \mathbb{R}^d . Let *d* denote also the dimension of *C*. The vertices of *C* are assumed to be finite and denoted as e(C). A hyperplane *H* in \mathbb{R}^d can be parametrized by a pair (\mathbf{v}, w) , with $\mathbf{v} \in \mathbb{R}^d$ and $w \in \mathbb{R}$ as follows:

$$H_{\boldsymbol{\nu},w} := \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{\nu} \cdot \boldsymbol{x} = w \}.$$
(1)

The segment *S* connecting points $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^d$ is instead:

$$S_{\boldsymbol{a},\boldsymbol{b}} := \{ \boldsymbol{x} \in \mathbb{R}^d := \lambda \boldsymbol{a} + (1-\lambda) \boldsymbol{b}, 0 \le \lambda \le 1 \}.$$
 (2)

Definition 1 $H_{\mathbf{v},w}$ is a supporting hyperplane for *C* passing through $\mathbf{x}^* \in C$ if and only if $\mathbf{x}^* \in P_{\mathbf{v},w}$ and $\mathbf{v} \cdot \mathbf{x} \leq \mathbf{v} \cdot \mathbf{x}^*$ for each $\mathbf{x} \in C$.

Definition 2 A point \mathbf{x}^* belongs to the boundary b(C) of the convex set C if and only if there is at least a supporting hyperplane for C passing through \mathbf{x}^* .

We use notation CH for the convex hull of a set of points, e.g., C := CH[e(C)]. The following result holds.

Lemma 3 Let C be a convex set in \mathbb{R}^d such that d is also its dimension (i.e., Given $a, b \in e(C)$, let $\mathbf{x}^* := \frac{1}{2}(a+b)$. Let also $C' := \operatorname{CH}[e(C) \setminus \{a, b\}]$, while $H_{\mathbf{v}, w}$ denotes a supporting hyperplane for C through \mathbf{x}^* . It holds that, if $S_{a, b} \subset H_{\mathbf{v}, w}$, then $\mathbf{x}^* \notin C'$.

Proof By construction $\mathbf{x} \in S_{a,b}$. Assume, ad absurdum, $\mathbf{x}^* \in C'$. Thus, \mathbf{x}^* should be a convex combination of the vertices of C', i.e.

$$\boldsymbol{x}^* = \sum_{\boldsymbol{z} \in e(C) \setminus \{\boldsymbol{a}, \boldsymbol{b}\}} \lambda_{\boldsymbol{z}} \boldsymbol{z}, \qquad (3)$$

where $\lambda_z \geq 0$ for each $z \in e(C) \setminus \{a, b\}$ and $\sum_{z \in e(C) \setminus \{a, b\}} \lambda_z = 1$. Take the scalar product by v:

$$\boldsymbol{v} \cdot \boldsymbol{x}^* = \boldsymbol{v} \cdot \left[\sum_{\boldsymbol{z} \in e(C) \setminus \{\boldsymbol{a}, \boldsymbol{b}\}} \lambda_{\boldsymbol{z}} \boldsymbol{z} \right] = \sum_{\boldsymbol{z} \in e(C) \setminus \{\boldsymbol{a}, \boldsymbol{b}\}} \lambda_{\boldsymbol{z}} \boldsymbol{v} \cdot \boldsymbol{z} \,. \tag{4}$$

By supporting hyperplane definition and simple algebra:

$$\boldsymbol{v} \cdot \boldsymbol{x}^* = \sum_{\boldsymbol{z} \in e(C) \setminus \{\boldsymbol{a}, \boldsymbol{b}\}} \lambda_{\boldsymbol{z}} \boldsymbol{v} \cdot \boldsymbol{z} \leq \sum_{\boldsymbol{z} \in e(C) \setminus \{\boldsymbol{a}, \boldsymbol{b}\}} \lambda_{\boldsymbol{z}} \boldsymbol{v} \cdot \boldsymbol{x}^* = \boldsymbol{v} \cdot \boldsymbol{x}^* \,.$$
(5)

This implies $\mathbf{z} \in H_{\mathbf{v},w}$ for each $z \in e(C) \setminus \{\mathbf{a}, \mathbf{b}\}$. As also **a** and **b** belong to $H_{\mathbf{v},w}$, we have $e(C) \subset H_{\mathbf{v},w}$. In other words C is included in a hyperplane and it coincides with its boundary, but this is against the original assumption about the dimension of C.

As a consequence of this lemma we have that, in Definition 1, the midpoint of the two vertices added to C is a vertex of the new set. This simply following that the two points at minimum (Euclidean) distance belong to a same edge of a convex polytope and the credal set can be always parametrized in order to have full dimension (see discussion in Section 3. When coping with non-Euclidean distances, to have the same result, the two points at minimum distance in Definition 1 should be detected with the additional condition of belonging to a same edge.