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Robust Bayesian Causal Inference for High-Dimensional Problems
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Consider an observational study comprising of n subjects, where subject i has output y; € R, input x; € R”, and treatment
indicator T; € {0,1}. In causal inference, we are interested in the effect of 7; on y;, for instance, to determine the effects of,
say, a drug or a medical procedure. In many cases, we are also interested in the association between the inputs (x;) and
the output variable and we consider a regressional model ¥; = T;« +xl-T B where o is the causal effect. Often, there is also
correlation between the treatment indicator 7; and the input x;, and to avoid bias in the inferences, this needs to be explicitly
modelled. Koch et al. [2] suggested a probit model P(7; = 1|x;) = ®(x! y) (where ® is the standard normal cumulative
distribution function) through a latent variable 7;*:
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with parameters @ € R, § € R?, and y € R?. We are interested in inference about E(Y;|T; = 1) — E(Y;|T; = 0) = c.
For high dimensional problems, that is when p > n, we wish to perform variable selection as well as estimating the
average causal effect. However, this becomes problematic as we often lack the necessary information. This motivates us to
perform a robust Bayesian analysis. We consider spike and slab priors to specify 8 and 7, so that for 1 < j < p,
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We fix sufficiently small 75 (1> 73 > 0) so that (f3;, 7;) has its probability mass concentrated around zero and consider 77 to
be large so that ‘L'l2 > ‘L'g. This allows the prior for (B;,7;) # (0,0) to be flat. We use a set of beta priors to specify the selection
probability 7; of the j-th group where g; represents our prior expectation of the selection probability (7;) and ‘s’ represents
a concentration parameter. We perform our robust Bayesian analysis on ¢ := (g1, ..., qp) € & = (Z1,---,P,) C (0,1).
For o, we use a normal distribution with mean zero and a large variance to get an estimate of the causal effect. We can also
consider a set of priors for ¢ in a more generalised setting. However, for very large values of p, this can be computationally
expensive.

Our hierarchical model allows us to compute the posteriors through Gibbs sampling method. We use a robust decision
rule on the posterior expectation of 7; for variable selection. This type of variable selection includes both B and y
simultaneously. However, in some cases, the association with treatment or the association with outcome can be zero or
negligible. Therefore we need to perform an ad-hoc rule to recover sparse effects. To do so, we use “decoupled shrinkage
and selection” method [1] to enable an adjusted sparse estimate of a potentially weak effect in a selected group. This way,
we get a set of robust Bayesian estimates for f and y as well as a set of robust Bayesian estimates for the average causal
effect o.
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