
Poster Abstract ISIPTA 2021

Robust Bayesian Causal Inference for High-Dimensional Problems
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Consider an observational study comprising of n subjects, where subject i has output yi ∈R, input xi ∈Rp, and treatment
indicator Ti ∈ {0,1}. In causal inference, we are interested in the effect of Ti on yi, for instance, to determine the effects of,
say, a drug or a medical procedure. In many cases, we are also interested in the association between the inputs (xi) and
the output variable and we consider a regressional model Yi = Tiα + xT

i β where α is the causal effect. Often, there is also
correlation between the treatment indicator Ti and the input xi, and to avoid bias in the inferences, this needs to be explicitly
modelled. Koch et al. [2] suggested a probit model P(Ti = 1|xi) = Φ(xT

i γ) (where Φ is the standard normal cumulative
distribution function) through a latent variable T ∗i :

Yi|Ti,xi ∼ N(Tiα + xT
i β ,σ2) T ∗i |xi ∼ N(xT

i γ,1) Ti :=
{

1 if T ∗i >0
0 otherwise

(1)

with parameters α ∈ R, β ∈ Rp, and γ ∈ Rp. We are interested in inference about E(Yi|Ti = 1)−E(Yi|Ti = 0) = α .
For high dimensional problems, that is when p > n, we wish to perform variable selection as well as estimating the

average causal effect. However, this becomes problematic as we often lack the necessary information. This motivates us to
perform a robust Bayesian analysis. We consider spike and slab priors to specify β and γ , so that for 1≤ j ≤ p,

β j,γ j | π j,σ
2 ∼ π jN

(
0,τ2

1

[
σ2 0
0 1

])
+(1−π j)N

(
0,τ2

0

[
σ2 0
0 1

])
; π j ∼ Beta(sq j,s(1−q j)) . (2)

We fix sufficiently small τ2
0 (1� τ2

0 > 0) so that (β j,γ j) has its probability mass concentrated around zero and consider τ2
1 to

be large so that τ2
1 � τ2

0 . This allows the prior for (β j,γ j) 6=(0,0) to be flat. We use a set of beta priors to specify the selection
probability π j of the j-th group where q j represents our prior expectation of the selection probability (π j) and ‘s’ represents
a concentration parameter. We perform our robust Bayesian analysis on q := (q1, . . . , qp) ∈P := (P1, · · · ,Pp)⊆ (0,1)p.
For α , we use a normal distribution with mean zero and a large variance to get an estimate of the causal effect. We can also
consider a set of priors for α in a more generalised setting. However, for very large values of p, this can be computationally
expensive.

Our hierarchical model allows us to compute the posteriors through Gibbs sampling method. We use a robust decision
rule on the posterior expectation of π j for variable selection. This type of variable selection includes both β and γ

simultaneously. However, in some cases, the association with treatment or the association with outcome can be zero or
negligible. Therefore we need to perform an ad-hoc rule to recover sparse effects. To do so, we use “decoupled shrinkage
and selection” method [1] to enable an adjusted sparse estimate of a potentially weak effect in a selected group. This way,
we get a set of robust Bayesian estimates for β and γ as well as a set of robust Bayesian estimates for the average causal
effect α .
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