
Poster Abstract ISIPTA 2021

An Efficient Lower Transition Rate Operator
for the Sensitivity Analysis of Continuous-Time Markov Chains*

Thomas Krak T.E.KRAK@TUE.NL

Uncertainty in Artificial Intelligence, Eindhoven University of Technology, The Netherlands

Continuous-time Markov chains (CTMCs) are popular probabilistic models that describe the uncertain evolution of
a dynamical system whose time domain is the non-negative reals R≥0. We assume that this system takes values in a
non-empty and finite state space X , with size n := |X |. When a CTMC is time-homogeneous, it can be characterised—up
to its initial distribution—by a single rate matrix Q. This is a n×n matrix with entries Q(x,y) ∈ R, such that for all x ∈X ,
∑y∈X Q(x,y) = 0 and Q(x,y)≥ 0 for all y ∈X with x 6= y. We use R to denote the set of all rate matrices.

When faced with uncertainty about the specification of a CTMC—be it with respect to the numerical parameters, or
structural assertions like Markovianity or time-homogeneity—a sensitivity analysis may be performed using a continuous-
time imprecise-Markov chain (CTIMC). This model can be seen as a set PQ of stochastic processes that are consistent with
a non-empty bounded set Q ⊂R of rate matrices. One may consider different types of CTIMCs by including different
types of models in PQ . For example, one may include all time-homogeneous CTMCs characterised by the elements Q ∈Q.
However, one could additionally include non-homogeneous CTMCs, or even more general—non-Markovian—processes;
see Krak [1] for an analysis of these different types. Given a CTIMC PQ, the associated (conditional) lower- and upper
expectations EQ[· | ·] and EQ[· | ·] provide tight lower- and upper bounds, for any inference of interest, with respect to every
model included in PQ . To make this practicable, we need efficient methods to compute these lower- and upper expectations;
by the well-known conjugacy property EQ[· | ·] =−EQ[−· | ·], it suffices to focus on only the lower expectations.

Following Škulj [2], we associate with Q its corresponding lower transition rate operator Q, which is a map Q : f 7→Q f
from RX to RX , where for all f ∈ RX and x ∈X , we let Q f (x) := infQ∈Q Q f (x). Then for any f ∈ RX and t ∈ R≥0,
the quantity EQ[ f (Xt) |X0] can be conservatively bounded by the solution f

t
∈ RX to the initial value problem

d f
t

d t
= Q f

t
for all t ∈ R≥0, with f

0
= f . (1)

That is, it holds that f
t
(x) ≤ EQ[ f (Xt) |X0 = x] for all t ∈ R≥0 and x ∈X ; crucially however, this bound is satisfied

with equality under some relatively mild assumptions on PQ and Q [2, 1]. Hence in those cases, solving (1) amounts to
computing the lower expectation of interest exactly. The differential equation (1) may be solved e.g. by iterative methods
described by Škulj [2], Krak [1]. To apply these methods, we need an (ideally efficient) way to evaluate Q f for any f ∈RX .

input: Rate matrix Q ∈R, radius r ∈ R≥0, function f ∈ RX

output: Function Q f ∈ RX , where Q corresponds to Q = B(Q,r)⊂R
(x1, . . . ,xn) := SortDecreasing(X , f ); // sort X such that f (xi)≥ f (xi+1) for all i ∈ {1, . . . ,n−1}
for x ∈X do

r0 := r/2
for i ∈ {1, . . . ,n} do

if xi = x then ∆i := ri−1 else ∆i := min{ri−1,Q(x,xi)}
ri := ri−1−∆i

Q f (x) := Q f (x)−∑
n
i=1 ∆i

(
f (xi)− f (xn)

)
return Q f

Algorithm 1: Efficiently evaluate Q f .

We here consider a special
case that we feel is important
for sensitivity analysis, where
we construct a simple perturba-
tion model for a given rate ma-
trix Q; we let Q :=B(Q,r) :={

Q′ ∈R : ‖Q−Q′‖
∞
≤ r

}
be

the closed ball in R of radius
r ∈ R≥0 around Q. This Q sat-
isfies the required properties to make the solution of (1) coincide with the lower expectation of interest [1, Prop. 6.20 and
Cor. 6.25]. Our main current contribution is Algorithm 1, which enables the efficient computation of Q f in this case; for a
proof of correctness, see Krak [1, Prop. 6.21]. It is easily seen that the runtime complexity of this algorithm is O(n2). This
enables the exceptionally efficient computation of exact bounds on inferences under this perturbation model.
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